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We study the quantum electrodynamics (QED) vacuum in the presence of a body rotating along
its axis of symmetry and show that the object spontaneously emits energy if it is lossy. The radiated
power is expressed as a general trace formula solely in terms of the scattering matrix, making an
explicit connection to the conjecture of Zel’dovich [JETP Lett. 14, 180 (1971)] on rotating objects.
We further show that a rotating body drags along nearby objects while making them spin parallel
to its own rotation axis.

Quantum zero-point fluctuations of the electromag-
netic field in vacuum lead to macroscopic manifestations
such as the Casimir attraction between neutral conduc-
tors [1]. When objects are set in motion, they may pull
out real photons from the fluctuating QED vacuum. In
fact, accelerating boundaries radiate energy, and thus
experience friction, through the dynamical Casimir ef-
fect [2] (see Ref. [3] for a recent review). Even two paral-
lel plates moving laterally at a constant speed experience
a non-contact frictional force [4, 5]. While a constant
translational motion requires at least two bodies (other-
wise, trivial due to Lorentz symmetry), a single spinning
object can experience friction. In a recent work [6], Man-
javacas and Garćıa studied such rotational friction by ex-
pressing the polarization fluctuations of a small spinning
particle via the fluctuation-dissipation theorem, and ob-
tained a frictional force even at zero temperature. In fact,
this problem is closely related to a classical phenomenon
known as superradiance due to Zel’dovich [7]. He argues
that a rotating object amplifies certain incident waves,
and further conjectures that, when quantum mechanics
is considered, the object should spontaneously emit radi-
ation only for these so-called superradiating modes. In-
deed this is shown to be the case for a rotating (Kerr)
black hole by Unruh [8]. This phenomenon, however, is
different in nature from Hawking radiation [9]. One can
also find similar effects for a superfluid [10].

In this letter, we treat the vacuum fluctuations in the
presence of a rotating object exactly, except for the as-
sumption of small velocities to avoid complications of rel-
ativity. By incorporating scattering techniques into the
Rytov formalism [11], we find a general trace formula
for the spontaneous emission by an arbitrary spinning
object, solely in terms of its scattering matrix. We re-
produce the results in the literature and find an expres-
sion for the radiation by a rotating cylinder. Finally, we
study the interaction of a rotating body with a test ob-
ject nearby and show that the rotating body drags along
nearby objects while making them rotate parallel to its
own rotation axis.

Our starting point is the Rytov formalism [11] which
relates fluctuations of the electromagnetic (EM) field
to fluctuating sources within the material bodies, and

in turn to the material’s dispersive properties, via the
fluctuation-dissipation theorem. The EM fields are gov-
erned by the Maxwell equation

(

∇×∇×−ω2

c2
ǫ(ω,x) I

)

E =
ω2

c2
K, (1)

where a linear, and nonmagnetic medium is assumed.
Rytov postulates that the sources undergo fluctuations,
which are related to the imaginary part of the local di-
electric response ǫ(ω,x) by

〈K(ω,x)⊗K∗(ω,y)〉 = aT (ω) Im ǫ(ω,x)δ(x− y) I. (2)

Here, aT (ω)) = 2~(nT (ω) + 1/2) where nT (ω) =
[exp(~ω/kBT ) − 1]−1 is the Bose-Einstein occupation
number, and T is the temperature. Equations (1) and
(2) define the fluctuations of the EM-fields in the pres-
ence of a static object at temperature T . For bodies in
uniform motion, they are applied in the rest frame of the
object, and then transformed to describe the EM-field
fluctuations in the appropriate laboratory frame. With
all contributions of the field correlation functions in a sin-
gle frame, one can then compute various physical quan-
tities of interest, such as forces, or energy transfer from
one object to another, or to the vacuum. For non-uniform
motion, we assume that the same equations apply locally
to the instantaneous rest frame of the body [12]. This
assumption should be valid as long as the rate of acceler-
ation is less than typical internal frequencies characteriz-
ing the object, which are normally quite large. The mod-
ified Maxwell equations are easier to derive from a La-
grangian, LEM = 1

2 ǫ
′ E′2 − 1

2 B
′2, with the primed fields

defined with respect to the co-moving reference frame.
To incorporate the fluctuating sources, we must add

∆L = K′ · E′ (3)

to the Lagrangian, where K′ is defined in the object’s
frame. To make contact with the EM-field in the vacuum,
we should recast all fields in the stationary (lab) frame.
In this letter we assume that the velocity of the ob-

ject is small such that, to the lowest order in v/c, the
electromagnetic fields transform as

E′ = E+
v

c
×B, B′ = B− v

c
×E.
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We discuss below the limits that this assumption places
on the generality of our analysis. In the lab frame the
EM equation is then given by

[

∇×∇×−ω2

c2
I− ω2

c2
D̃(ǫ′ − 1)D

]

E =
ω2

c2
D̃K′, (4)

where D = I + 1
iω
v × ∇ × and D̃ = I + 1

iω
∇ × v×.

Also ǫ′ is the response function defined in the object’s
rest frame, now written in terms of laboratory coordi-
nates. Equation (4) describes the EM-field in the lab
frame in terms of sources defined in the object’s frame,
〈K′(ω′,x′)⊗K′∗(ω′,y′)〉 = aT (ω

′) Im ǫ(ω′,x′)δ(x′−y′) I ,
where ω′ and x′ are understood as the frequency and po-
sition in the moving frame, which should be transformed
to those in the lab frame.
Next we turn to the main point of this study, namely

a solid of revolution spinning with angular frequency Ω
along its axis of symmetry. We choose time and polar
coordinates (t, r, φ, z) and (t′, r′, φ′, z′) in the lab and the
object reference frames respectively, and take the rota-
tion along the z axis. The two coordinate systems are
related by

t′ = t, r′ = r, φ′ = φ− Ωt, z′ = z. (5)

Consider a fluctuation of the source characterized by
frequency ω′ and azimuthal index m′, K′

ω′,m′(t′,x′) =

e−iω′t′+im′φ′

fω′,m′(r′, z′). Note that f depends only on
the coordinates r′ and z′. As a matter of notation, we de-
fine K(t,x) ≡ K′(t′,x′), i.e. we drop the prime when the
function is expressed in the lab-frame coordinates. The
coordinate transformation in Eq. (5) then implies that
the frequency as seen by the rotating object is shifted by
Ωm,

Kω,m(t,x) = K′
ω−Ωm,m(t′,x′).

This equation, in turn, recasts the source fluctuations
into the lab coordinates:

〈Km(ω,x)⊗K∗
m(ω,y)〉 = aT (ω − Ωm)×

× Im ǫ(ω − Ωm, r, z)
δ(rx − ry)δ(zx − zy)

2πr
I. (6)

Here, we used the constraint that the object is rotation-
ally symmetric in the φ direction. Equation (4) together
with the above equation describes the electromagnetic
field fluctuations in the presence of a rotating body. Note
that Eqs. (2) and (6) include both positive and negative
frequencies; since aT (ω) and Im ǫ(ω) are odd functions,
rest frame fluctuations are identical for opposite signs.
The electromagnetic fields outside the object receive

contributions both from the fluctuating sources within
the object and from fluctuations (both zero-point and at
finite temperature, thermal) in the vacuum outside the
object. The source fluctuations in the vacuum are given
by Eq. (2) as described below.

First we consider the fluctuations inside the object and
find the corresponding field correlation functions. Equa-
tion (4) together with free Maxwell equation in the vac-
uum (ǫ = 1, K′ = 0) gives the electric field via the
Green’s function

Ein-fluc(ω,x) =
ω2

c2

∫

in

dzG(ω,x, z) · D̃K(ω, z), (7)

where we have rewritten K′ in terms of lab-frame coor-
dinates. The subscript on E indicates that the electric
field is due to the inside fluctuations (but is possibly com-
puted outside the object). The required Green’s function
(with one point inside and the other outside the object)
can be formally expanded as

G(ω,x, z) =
i

2

∑

αm

Eout
ᾱm

(ω,x)⊗ Fαm
(ω, z). (8)

The index αm denotes a set of quantum numbers includ-
ing m, the eigenvalue of the angular momentum along
the z direction (in units of ~). Also ᾱ indicates the time
reversal of the partial wave α. For example, for spherical
waves αm = (P, l,m), where P is the polarization and l
is the eigenvalue of the total angular momentum. Here,
Eout(in) is the usual outgoing (incoming) wave, while F

is a solution to the homogeneous EM equation inside the
object, i.e. Eq. (4) with the RHS set to zero. The impor-
tant constraints are the continuity equations these func-
tions satisfy on the surface of the object

(Fαm
)‖ =

(

Ein
αm

+ Sᾱm
Eout

αm

)

‖
,

where S is the scattering matrix. A similar equation
holds for the curl acting on the fields. It turns out that
the knowledge of the surface values of F, which in turn
can be expressed in terms of the scattering matrix Sαm

, is
sufficient for computing the correlation functions. Equa-
tions (7) and (8) along with the source fluctuations of
Eq. (6), and a few integrations by parts yield

〈E(ω,x)⊗E∗(ω,y)〉in-fluc =
ω2

4c2

∑

αm

aT (ω − Ωm)

×
(

1− |Sαm
|2
)

Eout
αm

(ω,x)⊗Eout∗
αm

(ω,y). (9)

Next we turn to fluctuations caused by outside (vac-
uum) sources. Equation (2) may appear to suggest that
these fluctuations vanish because Im ǫ = 0 in the vac-
uum, whereas vacuum fluctuations exist even in the ab-
sence of any objects. The key is that an integral over in-
finite space leads to 1/ Im ǫ and thus the limit Im ǫ → 0
should be taken with care [14]. A careful analysis similar
to that for the inside contribution yields the correlation
function due to the outside sources as

〈E(ω,x)⊗E∗(ω,y)〉out-fluc =
ω2

4c2
aT0

(ω)×

×
∑

αm

(

Ein
αm

(ω,x) + Sαm
Eout

αm

(ω,x)
)

⊗
(

Ein∗
αm

(ω,y) + S∗
αm

Eout∗
αm

(ω,y)
)

. (10)
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Note that the function aT0
is defined at the environment

temperature T0 and depends only on ω, unlike the inside
fluctuations which depend on the shifted frequency, ω −
Ωm. Equation (10) has a rather intuitive form: each
term in the dyadic expansion is a linear combination of
the incoming wave plus the scattered outgoing wave.
Summing Eqs. (9) and (10), the total correlation func-

tion is given by

〈E⊗E∗〉 = 〈E⊗E∗〉in-fluc + 〈E⊗E∗〉out-fluc.

The above equation completely characterizes the vacuum
fluctuations in the presence of a rotating body possibly
at a different temperature from the vacuum. Interest-
ingly, even at zero temperature, the rotating body spon-
taneously emits energy, as can be computed by averaging
over the Poynting vector, 〈E× B〉, and integrating over
a surface enclosing the object. The sum of the in- and
out-fluctuation contributions yields

P =

∫ ∞

0

dω

2π
~ω×

∑

αm

[nT (ω − Ωm)− nT0
(ω)]

(

1− |Sαm
(ω)|2

)

. (11)

Note that the singularity of nT at ω = Ωm is removed
since 1−|S|2 vanishes there. Equation (11) can be written
in a basis-independent form, where the radiation takes
the form

P =

∫ ∞

0

dω

2π
~ω×

Tr
[(

nT (ω − Ω l̂z)− nT0
(ω)

)

(

I− S
†(ω)S(ω)

)

]

. (12)

Here l̂z is the z-component of the angular momentum
operator (in units of ~) and S is the (basis-independent)
scattering matrix. Note that this equation reduces to the
heat radiation from a static object in the limit of zero
angular velocity [14, 15]. We are specifically interested
in zero temperature. In this limit, the number of radiated
photons in the partial wave αm is

dNαm

dω
= Θ(Ωm− ω) (|Sαm

(ω)|2 − 1), (13)

where Θ is the Heaviside function. Hence, the radiation
only comes from the frequency window 0 < ω < Ωm for
the mth partial wave. In fact, Zel’dovich proposed classi-

cal superradiance for the same frequency regime [7]. He
considered a rotating cylinder and argued that exactly
for waves in the above frequency range, the amplitude
of the scattered wave (in absolute value) is larger than
one, i.e. |Sαm

(ω)| > 1; see Refs. [16, 17] for further
discussion. He further conjectured that taking quantum
mechanics into account would lead to spontaneous emis-
sion. Equations (11-13) are, to our knowledge, the first
expressions for spontaneous emission by a rotating ob-
ject given explicitly in terms of the scattering matrix,

which show that, at zero temperature, the radiation is
generated exactly in the superradiating channels.
Note that, having assumed non-relativistic velocities,

we must keep only the leading contribution in ΩR/c to
radiation from each partial wave. In fact, higher par-
tial waves typically contribute in higher powers of this
quantity. Therefore, to compute the total radiation at
zero temperature, we must keep only the lowest partial
wave, while at finite temperature higher partial waves
can make a comparable, or even larger, contribution due
to the Boltzmann weight.
Using the general expression for radiation, we now dis-

cuss some simple special cases, namely a sphere and a
cylinder. To find the S-matrix of a rotating object we
have to solve a complicated equation — Eq. (4) with the
RHS set to zero, but the task is made easier by mak-
ing a further assumption that the object’s radius is small
enough so that |√ǫ|ΩR/c ≪ 1, which allows us to neglect
the explicit dependence on the velocity (D ≈ I). Also,
for small Ω we need only consider the low-frequency re-
sponse.
For a sphere the T -matrix is related to its (electric)

polarizability α by: TEE
1m1m(ω) = i 2ω

3

3c3 α(ω − Ωm); the
argument of α is ω − Ωm because that of ǫ is shifted.
The value of these functions for negative arguments can
be obtained through their analytic properties. The scat-
tering matrix is related to the T -matrix via S = 1 + 2T ,
and the energy radiation in the lowest partial wave can be
computed by Eq. (11). The result is indeed in agreement
with Ref. [6].
The T -matrix for the cylinder is rather complicated.

Further, one must take into account all polarizations.
Here, we quote the final result for a slowly rotating cylin-
der of radius R and length L, and at zero temperature
everywhere,

P =
2~LR2

3πc3

∫ Ω

0

dω ω4

∣

∣

∣

∣

Im
ǫ(ω − Ω)− 1

ǫ(ω − Ω) + 1

∣

∣

∣

∣

. (14)

This equation, valid for arbitrary ǫ, reproduces the result
in Ref. [18] in the limit of small conductivity.
The radiation from a rotating object exerts pressure

on nearby objects. Consider a spherical object with an-
gular velocity Ω along the z direction and a second small
spherical body— a test object — at rest, placed at a sep-
aration d on the x axis. One finds that, in addition to the
force along the x axis, there is a tangential force in the
y direction. Furthermore, a torque is exerted on the test
object. To compute this effect, we break up the EM-field
correlation function into radiation (due to propagating
photons) and non-radiation (due to zero-point fluctua-
tions) parts:

〈E⊗E∗〉 = 〈E⊗E∗〉rad + 〈E⊗E∗〉non−rad .

The non-radiation part gives the Casimir force which
makes no contribution to the tangential force or the
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torque. At zero temperature, the radiation comes only
through the superradiating modes with ω < Ωm,

〈E(ω,x)⊗E∗(ω,y)〉rad =
~ω2

2c2

∑

αm

Θ(Ωm− ω)

×
(

1− |Sαm
|2
)

Eout
αm

(ω,x)⊗Eout∗
αm

(ω,y). (15)

We assume that d is large compared to the length scales
of both the rotating body and the test object, and thus
compute the first reflection of the radiation off of the
test object [19]. First we transform the outgoing waves
to regular waves about the origin of the second object
via translation matrices [13]. These waves scatter on the
second object giving

M =
~c2

8πd2

∫ Ω

0

dω
1

ω2
(|S11E |2 − 1)(1− |S11E |2), (16)

for the torque, and

Fy =
~

32πd

∫ Ω

0

dω (|S11E |2 − 1)(1− ReS11E), (17)

for the shear force on the test object, where S11E and
S11E are the scattering matrices of the rotating and the
test object, respectively, in the lowest partial wave (l =
m = 1, P = E). This partial wave gives the leading order
in 1/d for small Ω. Note that the torque falls off as 1/d2

with separation while the force goes as 1/d. Furthermore
the signs are positive, i.e. a rotating body drags along
objects nearby while making them rotate parallel to its
own rotation axis.
To get an estimate for the magnitude of radiation ef-

fects, we consider a rapidly spinning nanotube of radius
R and length L, and assume that ΩR/c is small. We
then find that the rotation slows down by an order of
magnitude over a time scale of τ ∼ (I/~) (c3/LR2Ω3).
The moment of inertia of a nanotube can be as small as
10−33 in SI units [20] (compare with ~ ≈ 10−34). So even
at small velocities, τ can be of the order of a few hours.
We have derived a universal formula for the sponta-

neous emission by a rotating object in terms of the scat-
tering matrix that makes an explicit connection to the
physical principles behind superradiance. Furthermore,
it allows one to circumvent assumptions about small size
or small conductivity used in the literature. We also be-
lieve the current formalism naturally generalizes to rel-
ativistic motion. Finally, generalization of the technical
and conceptual aspects of this work to the interaction of
multiple (moving) objects would be worthwhile.
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