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We study the cascading failures in a system composed of two interdependent square lattice net-
works A and B placed on the same Cartesian plane, where each node in network A depends on
a node in network B randomly chosen within a certain distance r from the corresponding node in
network A and vice versa. Our results suggest that percolation for small r below rmax ≈ 8 (lattice
units) is a second-order transition, and for larger r is a first-order transition. For r < rmax, the
critical threshold increases linearly with r from 0.593 at r = 0 and reaches a maximum, 0.738 for
r = rmax and then gradually decreases to 0.683 for r = ∞. Our analytical considerations are in good
agreement with simulations. Our study suggests that interdependent infrastructures embedded in
Euclidean space become most vulnerable when the distance between interdependent nodes is in the
intermediate range, which is much smaller than the size of the system.

Most previous studies of the robustness of interde-
pendent networks [1–19] focused on random networks in
which space restrictions are not considered. Most real
networks are embedded either in two-dimensional or in
three-dimensional space, and the nodes in each network
might be interdependent with nodes in other networks.
One example is a computer in a computer network is de-
pendent on power upon the functioning of a local power
grid network where both networks are spatially embed-
ded. Another example is the way the world-wide network
of seaports embedded in the two-dimensional surface of
the earth is interdependent with power grid networks em-
bedded on the same surface. A seaport needs electricity
from a nearby power station to operate and a power sta-
tion needs fuel supplied through a nearby seaport to op-
erate. Thus the failure of a power station in a power grid
network will cause a failure in a nearby seaport and vice
versa. Space constraints, such as the network dimension-
ality [20], influence the network properties dramatically,
and thus the question about the resilience of interdepen-
dent spatial networks is of much interest.

The case of interdependent spatially embedded net-
works is significantly different from interdependent ran-
dom networks in two ways: (i) within each network,
nodes are connected only to the nodes in their spatial
vicinity, while in the randomly connected networks, the
concept of spatial vicinity is not defined; (ii) the depen-
dency links establishing the interdependence between the
networks are not random but have a typical length r.
To understand how these space constraints affect the re-
siliency of interdependent networks, we study the mutual
percolation of a system composed of two interdependent
two-dimensional lattices A and B, where a node Ai can
connect to its dependent node Bj only within distance
r from Ai (see Fig. 1). Since a node can be functional
only if it is connected to the network, the resilience can
be measured, using percolation theory, as the size of the
remaining giant component after an attack on network.

Our model consists of two identical square lattices A

FIG. 1: Two square lattices A and B where in each lattice
every node has two types of links: connectivity links and
dependency links. Every node is initially connected to its
four nearest neighbors within the same lattice via connectiv-
ity links. Also, each node Ai in lattice A depends on one
and only one node Bj in lattice B via a dependency link (and
vice versa), with the only constraint that |xi − xj | ≤ r and
|yi − yj | ≤ r. If node Ai fails, then node Bj fails. If node Bj

fails, then node Ai fails. Network A is shifted vertically for
clarity.

and B of linear size L and N = L2 nodes with peri-
odic boundary conditions. In each lattice, each node has
two types of links: connectivity links and dependency
links. Each node is connected to its four nearest neigh-
bors within the same lattice via connectivity links. Also,
a node Ai located at (xi, yi) in lattice A is connected with
one and only one node Bj located at (xj , yj) in lattice
B via a dependency link, with the only constraint that
|xi − xj | ≤ r and |yi − yj| ≤ r (Fig. 1). The parameter r
represents the maximum distance a node in one network
gets support from a node in another network.

Although real networks embedded in two-dimensional
space may have more complex structures than the square
lattice, our model can serve as a benchmark for more
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complex situations. Moreover, it is known that the per-
colation transition in two dimensions has universal scal-
ing behavior which does not depend on the coordination
number and is the same for lattice and off-lattice mod-
els, as long as the links have a finite characteristic length.
Hence mutual percolation in two dimensions should not
depend on the particular realization of the model.
The difference between connectivity and dependency

links is that for connectivity links, a node fails only when
it does not belong to the giant cluster of its network,
while for dependency links, a node fails once the node
on which it depends in the other network (connected via
a dependency link) fails. An initial random attack de-
stroys a fraction 1−p of nodes in network A. This causes
a certain number of nodes to disconnect from the giant
component of network A so that only a fraction of nodes
p1 = P∞(p) remains functional. Here P∞(p) is the order
parameter of conventional percolation in a square lattice
[21]. The removal nodes in network A causes the removal
of the dependent nodes in network B. As a result, only
a fraction P∞(p1) of nodes in network B remains func-
tional. This produces additional damage in network A
and so on. The cascading failure process stops when no
further damage propagates between the lattices. If the
length of dependency links is totally random (r = L),
the formalism developed in Ref. [1] can be applied. Be-
cause at the i-th stage of the cascade the resulting giant
component P∞(pi) is the order parameter of conventional
percolation computed for a random fraction of nodes pi
surviving after all the nodes in network A that depend
on the nonfunctional nodes of the other network are re-
moved. Accordingly we can represent the cascading fail-
ure by the recursive equations for the survived fraction
pi,

p0 = p,

p1 = p
p0

P∞(p0) = P∞(p),

...

pi =
p

pi−1

P∞(pi−1). (1)

The recursive steps of Eq. (1), representing the cascading
failures in the giant component shown in Fig. 2, are in
good agreement with simulations. In the limit i → ∞,
Eq. (1) yields the equation for the mutual giant compo-
nent at steady state, µ ≡ P∞(p∞),

x =
√

pP∞(x), (2)

where x ≡ p∞. Using the form of P∞(x) for conven-
tional percolation obtained from numerical simulations,
Eq. (2) can be solved graphically as shown in the in-
set of Fig. 3. Due to the specific shape of the func-
tion P∞(p) [see Fig. 3], (P∞(p) < p, limp→1 P∞/p = 1,
limp→pc

P∞(p) = 0, and pc = 0.5927 for square lattice),
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FIG. 2: Giant component size P∞ as a function of step i at the
first-order transition regime at p = 0.6825 for r = L = 1000.
The simulation results (solid lines) are in good agreement with
the theoretical results (dots). The value of p is close to the
percolation threshold pµc = 0.6827.
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FIG. 3: The giant component size P∞ as a function of re-
maining fraction of nodes p. The solid curve is for conven-
tional percolation on a single square lattice, which describes
the limiting case of r = 0. The solid curve is obtained by
numerical simulations on N = 4000 × 4000 lattice sites with
periodic boundary conditions and averaged over 100 realiza-
tions. The dash curve represents the theoretical result for two
interdependent lattice networks with r = L given by Eq. (2).
The simulation results (dots) are for two interdependent lat-
tice networks with N = 1000 × 1000 and r = L. Inset: A
schematic graphical solution of Eq. (2) is shown. The curves

are
√

pP∞(x) for different p and the solution of Eq. (2) is
given by the intersection of the solid curves and the straight
line y = x. The critical p = pµc corresponds to the case
when the solid curve is tangential to the straight line y = x.
Numerical solutions of Eqs. (3) and (4) yield xc = 0.641,
P∞(xc) = 0.602, and pµc = 0.683.
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it does not have solutions for a small p except for the
trivial case x = 0.
Figure 3 shows the numerical solution of Eq. (2) which

is in good agreement with simulations and compares it
with P∞(p) of a single network. The critical p for which
the nontrivial solution ceases to exist, p ≡ pµc , corre-
sponds to the case when the r.h.s. of Eq. (2) becomes
tangential at the point of their intersection x = xc to its
l.h.s. (Fig. 3 inset). Hence

P ′

∞
(xc)xc = 2P∞(xc), (3)

from which the critical p for mutual percolation is

pµc = x2

c/P∞(xc). (4)

Numerical solutions of Eqs. (3) and (4) yield pµc = 0.683,
xc = 0.641, and P∞(xc) = 0.602, in good agreement
with simulations of the mutual percolation on lattices for
r = L as seen in Fig. 3. The inset of Fig. 3 shows a dis-
continuity in the order parameter of mutual percolation
µ(p) = P∞(p) at p = pµc , which drops from µ(p) = 0.602
to zero for p > pµc , characteristic of a first-order transi-
tion.
Next, we study the mutual percolation for different de-

pendency lengths r. An infinite coupling distance r = ∞
corresponds to the scenario of random dependency links
between the lattices discussed above. For r = 0, ev-
ery failed node in network A leads to removal of a node
in network B in the same location. Thus, the percola-
tion clusters in the two lattices are identical and there
is no feedback failure in network A. Therefore, the case
of r = 0 is identical to the case of conventional percola-
tion in non-coupled lattices. Figures 4(a), 4(b) show the
structure of the giant component just above pµc for very
small r (few lattice units) and for r = L respectively.
For small r the structure is similar to the heterogeneous
fractal-like giant component of single network [21]. In
contrast for r of the order of L the giant component is
homogeneous and almost compact but, surprisingly, on
the verge of a sudden collapse as a first-order transition.
For intermediate values of r the collapse occurs in a very
different way. Figures 4(c), 4(d), 4(e) show for intermedi-
ate values of r (discussed below) that the initial cascade
of failures is localized to a region of size r. Because of
local density fluctuations, the effective fraction of nodes
p in one region can be smaller than the overall average,
and therefore small clusters at this region become iso-
lated from the giant component and fail even when the
entire lattice is still connected. As soon as a region of size
r fails, the system becomes unstable: the interface of this
bubble starts to expand and soon engulfs the entire sys-
tem [Fig. 4(c)–(e)]. This local effect of a propagating
interface owing to finite dependency links increases the
system vulnerability compared to the case of random de-
pendency links. Thus we expect, pµc (r) > pµc (∞) found
for random dependency links. The process of formation
of the critical bubble is similar to nucleation near the
gas-liquid spinodal [23]. Thus, it is important to under-
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FIG. 4: Three different typical behaviors of interdepen-
dent lattices near criticality. Pictures of stable mutual gi-
ant component at criticality of two interdependent lattices
(N = 1000× 1000) after cascading failures initiated by a ran-
dom removal of 1−p of the nodes for (a) r = 4 and p = 0.680
and for (b) r = 1000 and p = 0.683. The dynamics of a grow-
ing bubble (explained in the text) for r = 20 is demonstrated
by three snapshots, (c), (d) and (e), of the non-stable giant
component of the interdependent lattices (N = 500 × 500)
during the cascading process initiated with p = 0.700.

stand the propagation of a flat interface, which would
correspond to gas-liquid coexistence.
In order to systematically study the conditions for

propagation of a flat interface, we study the two interde-
pendent networks with an empty gap on one edge in lat-
tice A. We construct the two networks with the length of
interdependent links smaller than r (see Fig. 1). The only
difference from our original system is that after random
removal of a certain fraction of nodes 1− p, we eliminate
the nodes in lattice A with coordinates distance yi ≤ r to
create an artificial flat interface. Simulations show that
the flat interface freely propagates and that the inter-
dependent lattices system totally collapses if p < pfc (r),
where pfc (r) is approximately a linear function of r with
pfc (0) = pc = 0.5927, pfc (rf ) = 1, and rf ∼= 38. For
r > rf , the interface freely propagates through the sys-
tem even when the lattice is completely intact. This hap-
pens because the removed nodes of lattice A above the
interface eliminate half of the nodes in lattice B with
yj ≤ r. Thus the effective concentration of nodes in the
lattice B linearly changes from p at distance r from the
interface to p/2 right at the interface. This system is
analogous to percolation in diffusion fronts studied by
Sapoval et al. [22]. There is thus a certain distance
from the interface rc = r(2pc − p)/p that corresponds to
the critical threshold of conventional percolation. If rc
is much larger than the typical cluster size in the range
between pc and p/2, all the nodes in lattice B in this
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FIG. 5: The fraction of nodes in the giant component as a
function of nodes survived after the initial attack. We perform
the simulations by gradually removing additional nodes. For
r = 6 the decrease of giant component occurs in multiple
steps, characteristic of a second-order transition. For r = 8
and r = 16, the giant component may completely collapse by
removal of even a single additional node, characteristic of a
first-order transition.

layer will be disconnected and hence the interface will
propagate freely. The interface can stop if rc = ξ(p/2),
i.e., the connectedness correlation length [21] when p/2
is less than pc. We estimate the critical concentration pfc
from the equation ξ(pfc /2) = r(2pc−pfc )/p

f
c , which yields

rf = ξ(1/2)/(2pc − 1) = 41 for the case p = 1, where
ξ(1/2) = 7.6 obtained by numerical simulations of con-
ventional percolation on a single lattice. This prediction
agrees well with simulations (rf ∼= 38). The propaga-
tion of the flat interface close to pfc (r) is similar to inva-
sion percolation, which is a fractal process with vanishing
number of active sites, and the average interface velocity
approaches zero at pfc (r), a characteristic of a second-
order transition. Thus, the system completely collapses
when (1) a flat interface exists and (2) p < pfc . The con-
ditions for flat interface propagation, pfc (r) were obtained
for the artificial model where the flat interface is initially
created. However, when the system is initiated by a spa-
tially random removal, a flat interface may be created by
random fluctuations over the lattice.
What can we learn from the flat interface behavior

on our original system with only initial random failures?
When r is large, the system begins to locally disintegrate
and, at p < pfc , a local cascade of failures is initiated.
As soon as a hole of size r is formed, an interface ap-
pears in a low p regime, and freely propagates through
the system—because p is already below the critical point
pfc of the interface propagation. As a result, the interface
will completely wipe out the remaining giant component
[see Fig. 4(c)–(e)]. Thus for large r, the transition is
first order, meaning it is all or nothing, a transition sim-
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FIG. 6: The critical pµc as a function of interdependent dis-
tance r. The change from second to first order transition
occurs at rmax ≈ 8. The critical pµc of mutual percola-
tion linearly increases for r < rmax following the percolation
threshold for flat interface and then gradually decreases to
pµc = 0.683 at r = ∞, which is in good agreement with the
theoretical results. Inset: Diameter of the hole size ξ as a
function of r on conventional percolation on a single lattice
network. ξh ≈ rmax = 8 at p = 0.744 is in good agreement
with the simulation.

ilar to spontaneous nucleation. At these conditions, the
removal of even a single additional node may cause the
disintegration of the entire system (Fig. 5).
The dynamics of the system becomes completely dif-

ferent for small r. In this case, when pfc is small, the
characteristic size of the holes ξh in the percolation clus-
ter is sufficiently large and there are many holes of size
ξh(p

f
c ) > r. Thus, the flat interface is formed before it

begins to propagate. Once p approaches pfc from above,
the interface begins to propagate simultaneously from all
large holes in the system. It can spontaneously stop at
any stage of the cascade, leaving any number of sites in
the mutual giant component (Fig. 5). The average num-
ber of sites in the giant component will approach zero as
p approaches pfc , subject to strong finite-size effects as in
conventional percolation. So for small r, the transition is
a second-order, and pµc (r) = pfc linearly increases with p
(Fig. 6).
The inset of Fig. 6 shows that at r = rmax, ξh(p

f
c (r)) =

r ≈ 8, and a flat interface will not spontaneously form.
Thus p must be below pfc (r) in order for the hole of size
r to appear in the system. Once a single hole of such
size appears, the flat interface will freely propagate be-
low its critical threshold wiping out the entire coupled
network system, as in a first-order transition. Note that
pfc (rmax) ≈ 0.738 > pµc = 0.6827. Thus as r increases,
pµc (r) gradually decreases (Fig. 6). This gradual decrease
is caused by two factors. When r increases in the vicin-
ity of rmax, smaller and smaller p is needed in order to
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create holes of size r. When p becomes close to pµc , the
system begins to undergo local cascades of failures if the
average density in the region of size r falls below pµc .
The average over r2 nodes of this region can deviate
from the mean p on the order of a standard deviation
√

p(1− p)/r, thus making the disintegration possible if
p = pµc (r) ≈ pµc + C/r, where C is a constant. Note that
pµc (r) has a tendency to increase with the system size.
The larger is the system, the more likely a sufficiently
large hole or a sufficiently large fluctuation in local den-
sity will lead to a local cascade of failures.
In summary, our analysis suggests that the change

from second-order to first-order transition occurs at
rmax ≈ 8. Note that Ref. [24] found a second-order tran-
sition for r = 0 on two interdependent lattice networks.
Our studies show rich phase transition phenomena when

the length of the dependency links r changes. The crit-
ical p of mutual percolation increases linearly with r in
the range of r < rmax, and is characterized by a second-
order transition. For r ≥ rmax, the cascading failures
suggest a first-order transition and the critical p gradu-
ally decreases to pµc = 0.683 for r → ∞.
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