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Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between 
fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction.  This 
behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion 
equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in 
mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for 
finite-length pores. The RDE elucidate the non-exponential decay of the steady-state reactant 
concentration into the pore and the non-mean-field scaling of the reactant penetration depth. 
 
TEXT 
Anomalous tracer diffusion of a “tagged” particle in a single-file system, where particles within 
narrow pores cannot pass each other, was proven in the 1960’s for hard-core interactions [1] and 
later for general interactions [2]. Often motivated by early investigations of biological transport 
across membranes [3,4], numerous studies have considered single-file tracer diffusion in finite 
open [5], periodic [6,7], or closed [8] “pores”, and in other systems [9]. This type of inhibited 
transport has also been recognized to impact reactivity for catalysis in zeolites and other 
functionalized nanoporous materials [10-15]. For the latter reaction-diffusion phenomena which 
are of interest here, it is actually chemical diffusion [16] which controls behavior [15], and for 
which the connection to tracer diffusion is not well recognized. Another key aspect of these open 
reaction-diffusion systems is that steady-state behavior is not described by a classic Gibbs 
thermodynamic ensemble. In fact, a fundamental understanding of these steady-states, which 
depend on both the reaction kinetics and transport, remains a significant challenge [17-19]. 

 

Our specific focus is on first-order conversion reactions, A→B, occurring inside a parallel array 
of linear nanopores of a catalytically functionalized material such as mesoporous silica. 
Reactants, A, enter the pore openings, diffuse to catalytic sites, convert to a product, B, with 
microscopic rate k, and both reactants and products can diffuse out of the pore [11-15]. 
Furthermore, we assume that these pores are sufficiently narrow that passing of reactant and 
product species is inhibited or even excluded. It was recognized that reactivity can be strongly 
inhibited for single-file diffusion (SFD) relative to unhindered passing [12]. The reason is that 
except near their ends, the pores tend to be exclusively populated by product which is not readily 
extruded. Thus, the pore center does not participate in the conversion A→B.  
 
Some studies have suggested that this type of behavior, even for inhibited transport, can be 
captured by mean-field-type treatments of reaction-diffusion [13] which predict an exponential 
decay of reactant concentration into the pore with penetration depth scaling like Lp ~ kζ with ζ = 
-½ [14,15]. However, we will find fundamental short-comings in these mean-field treatments, 
noting that exact behavior for SFD even exhibits different scaling of Lp with ζ ≠ -½.  A 
deterministic hydrodynamic treatment [20] accounting for SFD [15] can describe reaction-
diffusion behavior in the regime of slowly varying concentration profiles (for long pores) even 
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for SFD, but this treatment completely fails to describe steady-state reactivity [15]. The reason 
for this failure is that steady-state behavior is controlled by the stochastic nature of adsorption 
and desorption of species at the pore openings. Thus, to correctly capture behavior, in this Letter, 
we pursue a generalized hydrodynamic formalism. This formalism requires an appropriate 
description of chemical diffusion in mixed-component systems, including the case of SFD, based 
on a relationship between chemical and tracer diffusion deriving from interacting particle systems 
theory. However, it also requires a refined picture of tracer diffusion for finite-length pores. 
 

In our model for A→B conversion (Fig.1), we consider a catalytic material composed of an array 
of similar parallel linear nanopores. Species within any pore are localized at a linear array of 
cells (or sites) labeled n=1 - L traversing the pore. The cell width “a” is chosen as a~1 nm 
comparable to species size. To describe the surrounding fluid, we can extend the 1D lattice 
inside the pores to a 3D lattice outside. But the fluid is assumed well-stirred, so that cells of the 
3D lattice are randomly occupied with specified probabilities, <Aout> and <Bout>, corresponding 
to the suitably normalized external reactant and product concentrations, respectively. The total 
concentration, <Xout> = <Aout> + <Bout> = χ, say, is fixed, whereas <Bout> slowly increases 
from an initial value of zero during extended reaction. This slow time-scale is controlled by the 
fluid volume and far exceeds that for relaxation of the concentration profile within the pore. 
 
In the simplest prescription corresponding to SFD within the pores, A and B hop to adjacent 
empty (E) cells at rate h per direction. We can also allow positional exchange of adjacent A and 
B at rate hex = h Pex to relax the strict SFD constraint, noting that exchange of adjacent particles 
of the same type has no effect.  The passing propensity, Pex, will increase with pore diameter d 
from Pex = 0 below a SFD-threshold to Pex ~1 for unhindered passing. Other mechanistic steps in 
the model are:  (i) Impingement of external species at terminal cells n=1 and n=L of the pore at 
rate iA = h<Aout>  (iB = h<Bout>) for the reactant A (product B), successful adsorption occurring 
if these end cells are unoccupied or empty (E); (ii) Attempted desorption of both A and B from 
terminal cells of the pore at rate h, success occurring with probability <Eout> = 1 - <Xout> for the 
neighboring fluid site to be unoccupied (Eout); (iii) Conversion A → B at rate k at catalytic cells.  
 

 
 

Fig.1. (Color online) Schematic of the key steps in our A→B catalytic conversion reaction 
model. “c” denote catalytic cells where reaction occurs at rate k. Behavior is shown in two 
adjacent pores which should be regarded as part of a larger array of pores. 
 
For the above rate choice, which follows previous studies [11-15], the “species blind” dynamics 
for particles X = A or B corresponds to a non-reactive diffusion process. In the steady-state, cells 
within the pore are randomly occupied by particles, X, with probability <Xout> = χ [14]. We will 
assess typical concentration profiles within a pore, corresponding to averaging over many pores. 
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Both time evolution and steady-state behavior (see Fig.2 for examples for the initial stages of 
reaction with <Bout> ≈ 0) can be assessed precisely by Kinetic Monte Carlo (KMC) simulation.  
 
An exact description of our discrete reaction-diffusion model is provided by hierarchical master 
equations for the evolution of probabilities of various configurations of subsets of cells within 
the pore [11,13-15]. Let <Cn> denote the probability that species C = A or B is at cell n, 
<CnEn+1> that C is at cell n and that cell n+1 is empty (E), etc. Then, the total conversion rate is 
Rtot = k ∑n=c<An> with the sum extending over all catalytic cells. Below we consider only the 
case of all cells catalytic (c). Then, the lowest-order equations in the hierarchy are [14,15] 

 

d/dt <An> =  -k <An> - ∇JA
n>n+1, d/dt <Bn> =  +k <An> - ∇JB

n>n+1,  for 1<n<L. (1) 
  
Separate equations for terminal cells reflect adsorption-desorption boundary conditions (BC’s), 
e.g.,  d/dt <A1> = h(<Aout> <E1> - <Eout> <A1>) - k <A1> - JA

1>2.  In (1), we have defined the 
discrete derivative, ∇Kn = Kn – Kn-1. The net flux, JA

n>n+1, of A from site n to n+1 is given by 
 

JA
n>n+1 = h [<AnEn+1> - <EnAn+1>] + hex [<AnBn+1> - <BnAn+1>].   (2) 

 
The first term gives the contribution from hopping to adjacent empty cells, and the second from 
exchange. The expression for the net flux, JB

n>n+1, of B is analogous. In the special case of 
unhindered transport where Pex =1 so hex = h, (2) reduces exactly to JA

n>n+1 = -h ∇<An> [15,21]. 
 
Equations (1) couple to pair probabilities in (2). Pair probability evolution couples to that of 
triples, etc., producing a hierarchy. Multi-site probabilities are not simply related to single-cell 
probabilities due to spatial correlations. The lowest-order site-approximation, <CnEn+1> ≈ 
<Cn><En+1>, etc., produces a closed set of discrete reaction-diffusion equations (RDE) for 
single-cell concentrations. A pair approximation factorizes triples in terms of pair and single-cell 
quantities generating a closed set of equations for these [13-15]. The triplet approximation 
factorizes quartets in terms of triplets, etc. [22]. However, these and all higher-order mean-field 
(MF) like truncation approximations suffer fundamental shortcomings. While accuracy increases 
with the order of the approximation, convergence to exact behavior can be slow. See Fig.2a. 
 

An alternative coarse-grained description considers concentrations per unit length, C(x=na, t) ≈ 
a-1 <Cn>, for C = A or B, smoothly varying with position x, which satisfy the continuum RDE 

 

∂/∂t A(x, t) = -k A(x, t) - ∂/∂x JA,  ∂/∂t B(x, t) = +k A(x, t) - ∂/∂x JB.   (3) 
 
BC’s for (3) at the pore ends reflect the adsorption-desorption dynamics [15]. Description of the 
diffusion fluxes, JA and JB, is critical. Setting X(x,t)=A(x,t)+B(x,t), we exploit a little-used result 
from interacting particle systems theory for mixtures of particles with identical dynamics [23] 
 

 JA  = -D(A/X)∂X/∂x - Dtr[(B/X)∂A/∂x - (A/X)∂B/∂x] → -Dtr ∂A/∂x for uniform X=a-1χ, (4) 
 
The form of JB is analogous. Here D = a2h is the chemical diffusion coefficient for particles X, 
and Dtr =D Ftr is a tracer diffusion coefficient. The site-approximation described above implies 
the mean-field form Ftr = 1 – χ [14,15] as is evident after coarse-graining of the discrete RDE. 
This choice overestimates fluxes for SFD. A classic analysis of SFD for infinite systems [1] finds 
that Ftr =0. The associated “hydrodynamic” RDE can describe the evolution of slowly varying 
profiles during filling of long pores [15]. However, this formulation which sets the diffusion 
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fluxes to zero and neglects fluctuations near pore openings completely fails to describe steady-
state profiles [15] as shown in Fig.2a. A refined treatment setting Ftr ~ 1/L, motivated by studies 
of finite-sized SFD systems [3,4,6,7], does not resolve this basic shortcoming. 
 

 
 
Fig.2. (Color online) Steady-state concentration profiles (A=solid, blue; B=red, dashed) for pore 
length L=100, k= 0.001, h=1, and χ=0.8: (a) predictions of site, pair, triplet approximations and 
the standard hydrodynamic treatment (hydro) versus precise KMC results for SFD (Pex=0); (b) 
KMC results for restricted passing with various Pex ≥0. 
 
Thus, our strategy is to develop a “generalized hydrodynamic” form for Ftr which captures the 
mesoscale fluctuations near pore openings being enhanced in these regions. A discrete form of 
(4) incorporating this Ftr then provides fluxes in (1) which are integrated to determine steady-
state behavior. One strategy to determine this Ftr(n) at cell n [24] for a pore with uniform 
<Xn>=χ  is based analysis of the “exit time”, tn(χ), for a tagged particle starting at this cell to 
reach a pore opening in the sense that its root-mean-square (rms) displacement grows to match 
the distance from the nearest pore opening. Specifically, we set Ftr(n) = tn(0+)/tn(χ) since 
diffusivity is inversely proportional to the time for the rms displacement to reach some specified 
value. This recovers the correct limiting value Ftr(n)→1 as χ→0+. Results for Ftr(n) in Fig.3a for 
SFD in finite pores reveal a central plateau of magnitude ~1/L (consistent with [3,4,6,7]), but 
with significantly larger values near pore openings. Use of this variable Ftr(n) in appropriate 
RDE to determine steady-state profiles yields excellent agreement with precise results from 
KMC simulation for SFD with L=100, in marked contrast to all other treatments.  See Fig.4 for 
profiles with <Bout> ≈ 0 (the initial stages of the reaction), and results in Table I for the 
penetration depth, Lp, naturally defined as Lp = ∑1≤n≤L/2 <An>/<A1>. 
 

χ=0.2 k=1 k=0.1 k=0.01 k=0.001 χ=0.8 k=1 k=0.1 k=0.01 k=0.001
KMC 1.47 2.92 6.77 15.2 KMC 1.10 1.47 2.64 5.21 
GHydro 1.49 3.10 7.19 15.8 GHydro 1.06 1.43 2.61 5.15 
MF 1.53 3.37 9.46 27.8 MF 1.17 2.00 5.00 14.7 
 
Table I. Comparison of reactant penetration depths, Lp (in units of ‘a’), with h=1 and L=100, for 
KMC, generalized hydrodynamic (GHydro) and mean-field site-approximation (MF) analyses. 
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Fig.3. KMC results for Dtr(n) [=Ftr(n) for a=h=1]: (a) n-dependence for various pore lengths L 
for χ=0.8 (inset shows L-dependence of central plateau value of Dtr for χ=0.2); (b) fitting of the 
decay of Dtr(n) with n for semi-infinite pore. Using the form in text, we choose α=0, β=1.543, 
γ=0.944 for χ=0.8 (inset: α=0.753, β=0.371, γ=0.0064 for χ=0.2). 
 

 
 
Fig.4. (Color online) Comparison of results for steady-state concentration values for L=100, 
k=0.001 (inset: k=0.01), and h=1 from KMC (symbols + line) with generalized hydrodynamic 
RDE predictions (thicker blue curves): (a) χ=0.2; (b) χ=0.8 (log is base 10). 
 
Next, we turn to the fundamental issue of the form of the concentration profiles and the scaling 
of the penetration depth, Lp, for SFD in a semi-infinite pore with 1≤n<∞. Clearly now Ftr(n)→0, 
as n→∞, but how? Deep inside the pore where classic SFD should apply, the rms displacement 
increases like t1/4 [1], so one expects that tn(χ>0) ~ n4. In contrast, tn(0+) ~ n2 for conventional 
diffusion. This suggests that Ftr(n) ~ 1/n2, as n→∞. Simulation results indicate that this behavior 
is achieved quickly for high total concentration χ=0.8, but more slowly for low χ=0.2 which 
displays an intermediate regime better described by Ftr(n) ~1/n scaling. Data in both cases is fit 
well for all n by the form Ftr(n) = Ftr(1)(1-α+β+γ)/(1-α⋅n1/2+β⋅n+γ⋅n2). See Fig.3b. 
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Insight into the consequences of this decay of Ftr(n) comes from analysis of the steady-state 
solutions of the continuum RDE for a semi-infinite pore x≥0 using (4) with the form Ftr(x) ~ 1/xp. 
One finds solutions which for small k and large Lp have the dominant form  
 

A(x) ~ exp[-(x/Lp)q] where q=(2+p)/2, and Lp ~(k/D)ζ with ζ = -1/(2+p).   (5) 
 

Thus, the true asymptotic scaling exponent is ζ =-1/4 (for p=2), but behavior mimicking ζ ≈ -1/3 
(for p=1) might be seen for lower χ, both contrasting MF behavior ζ = -1/2 (for p=0) [14,15]. 
These predictions are confirmed by numerical analysis of discrete generalized hydrodynamic 
RDE’s exploiting the capability of this deterministic treatment to obtain much more precise ζ-
values than possible by KMC. See Fig.5. Concentration profiles also exhibit the predicted non-
exponential decay, a feature which is already indicated in the non-linear form of the log-linear 
plots in Fig.4 (the downward bend corresponding to an effective exponent q>1 due to p>0). 
 

 
 

Fig.5. Predictions of generalized hydrodynamic RDE for the effective scaling exponent ζ = 
dlog(Lp)/dlog(k) for a semi-infinite pore: (a) χ=0.2; (b) χ=0.8. Upper insets: Lp versus k. 
 
We now mention various extensions of the above analysis. All results were presented for initial 
stages of reaction where <Bout> ≈0. However, analysis is readily extended to treat arbitrary 
fraction of conversion f = <Bout>/<Xout>, and we find an exact linear variation with f of the total 
conversion rate Rtot(f) =Rtot(0)(1-f) by virtue of the linearity of the RDE’s and BC’s. Dropping 
the SFD constraint, we have also analyzed Ftr(n) which still decreases with increasing n but now 
retains a substantial non-zero L-independent value in the pore center corresponding to tracer 
diffusion with exchange in an infinite pore. The corresponding generalized hydrodynamic 
treatment readily recovers behavior shown in Fig.2b. The greatest challenge in developing a 
predictive analytic treatment is for complete or near SFD, as other cases have more MF-like 
behavior. One can also readily extend the analysis to treat reversible reaction A↔B using the 
same Ftr(n) as determined above.  
 
Finally, we consider more general diffusional dynamics with unequal diffusion coefficients, DA 
and DB, for A and B, respectively. Analysis for SFD reveals behavior entirely analogous to the 
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case of equal hop rates with penetration of reactant into the pore, but the pore center populated 
only by product. Again, MF treatments overestimate diffusion fluxes and fail to describe steady-
state behavior. The key is to describe chemical diffusion for the mixed system (cf. [19,25]). We 
apply Onsager theory to determine the hydrodynamic form (corresponding to zero tracer 
diffusion) of JA  = -A(A/DA+B/DB)-1 ∂X/∂x for SFD, and JB is analogous. Since the total flux, JX 
=JA + JB, must vanish in the steady state, this implies that X is constant, so JA vanishes which in 
turn implies that A must be absent from the pore interior due to conversion to B. This failure of 
the hydrodynamic description to describe reactant penetration must again be overcome by 
accounting for fluctuation effects at the pore openings. 
 
In summary, the location-dependence of tracer diffusion near the openings of narrow pores is 
shown to control non-MF scaling of reactant penetration depth and thus reactivity for conversion 
reactions. Generalized hydrodynamic RDE’s provide a powerful tool with which to analyze this 
behavior. This work is supported by the Division of Chemical Sciences – BES, USDOE. Ames 
Laboratory is operated for the USDOE by ISU under Contract No. DE-AC02-07CH11358. 
 
[1] T.E. Harris, J. Appl. Prob. 2, 323 (1965). 
[2] M. Kollman Phys. Rev. Lett. 90, 180602 (2003). 
[3] A.L. Hodgkin and R.D. Keynes, J. Physiol. 128, 61 (1955).  
[4] E.J. Harris, “Transport and accumulation in biological systems” (AP, New York, 1960). 
[5] J.E. Santos and G.M. Schutz, Phys. Rev. E 64, 036107 (2001). 
[6] H. van Beijeren, K.W. Kehr, and R. Kutner, Phys. Rev. B 28, 5711 (1983). 
[7] A. Taloni and F. Marchesoni, Phys. Rev. E 74, 051119 (2006). 
[8] L. Lizana and T. Ambjornsson, Phys. Rev. Lett. 100, 200601 (2008). 
[9] E. Barkai and R. Silbey, Phys. Rev. Lett. 102, 050602 (2009). 
[10] “Catalysis and adsorption in zeolites”, G. Ohlman, H. Pfeifer, G. Fricke, Ed.s (Elsevier, Amsterdam, 
1991). 
[11] J.G. Tsikoyiannis and J.E. Wei, Chem. Eng. Sci 46, 233 (1991). 
[12] C. Rodenbeck, J. Karger, and K. Hahn, J. Catal. 157, 656 (1995). 
[13] M.S. Okino, R.Q. Snurr, H.H. Kung, J.E. Ochs, and M.L. Mavrovouniotis, J. Chem. Phys. 111, 2210 
(1999). 
[14] S.V. Nedea, A.P.J. Jansen, J.J. Lukkien, and P.A.J. Hilbers, Phys. Rev. E 65, 066701 (2002). 
[15] D.M. Ackerman, J. Wang, J.H. Wendel, D.-J. Liu, M. Pruski, and J.W. Evans, J. Chem. Phys. 134, 
114107 (2011). 
[16] R. Krishna, J. Phys. Chem. C 113, 19765 (2009). 
[17] G. Nicolis and I. Prigogine, “Self-organization in non-equilibrium systems” (Wiley, New York, 
1977). 
[18] J. Marro and R. Dickman, “Non-equilibrium Phase Transitions in Lattice-Gas Models” (CUP, 
Cambridge, 1999). 
[19] J.W. Evans, D.-J. Liu, and M. Tammaro, Chaos 12, 131 (2002). 
[20] H. Spohn, “Large scale dynamics of interacting particles” (Springer, Berlin, 1991). 
[21] R. Kutner, Phys. Lett. 81A, 239 (1981). 
[22] J.W. Evans, Rev. Mod. Phys.  75, 1281 (1993).  
[23] J. Quastel, Commun. Pure Appl. Math. 45, 623 (1992). 
[24] We obtain consistent results by creating steady-states with varying <An>, but constant <Xn> 
=χ, and obtaining varying Dtr from simulation results for a discrete version of the ratio -JA/∂A/∂x. 
[25] K.W. Kehr, K. Binder, and S.M. Reulein, Phys. Rev. B 39, 4891 (1989). 
 


