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Abstract

The classic results of de Gennes and Odijk describe the mobility of a semiflexible chain confined

in a nanochannel only in the limits of very weak and very strong confinement, respectively. Using

Monte Carlo sampling of the Kirkwood diffusivity with full hydrodynamic interactions, we show

that the mobility of a semiflexible chain exhibits a broad plateau as a function of extension before

transitioning to an Odijk regime, and that the width of the plateau depends on the anisotropy of

the monomers. For the particular case of DNA in a high ionic strength buffer, which has highly

anisotropic monomers, we predict that this Rouse-like behavior will be observed over most of the

measurable chain extensions seen in experiments.
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The configurations and dynamics of a flexible chain confined in a tube were described

quite some time ago by de Gennes [1–3] and Odijk [4]. Emerging genomics technologies such

as DNA barcoding [5, 6] have brought to the forefront the comparable problem of describing

semiflexible chains when they are confined in a nanochannel [7, 8]. In this Letter, we show

that the classical results for the mobility in the de Gennes [3] and Odijk regimes [4], which

we will confirm describe the dynamics of flexible chains over the full range of confinement,

are only the limiting cases for semiflexible chains such as DNA. Moreover, when DNA in

a high ionic strength buffer is used as a model polymer, we predict that the mobility is

independent of the fractional extension of the chain over the experimentally relevant range

of chain extensions [8] (∼ 20% to ∼ 80%). Thus, the commonly invoked ansatz [3] that the

friction coefficient of a confined, semiflexible chain is proportional to its extension fails for

DNA.

Let us first define what we mean by a semiflexible chain, since this term changes in

different contexts [9]. The polymer is described by its contour length L, persistence length

lp, and effective width w, such that the chain consists of N = L/lp persistence lengths.

Often, the term “semiflexible” is used in a global context to describe a chain where L ≈ lp,

corresponding to a semiflexible filament such as actin. In our study of chains confined in

nanochannels, we are concerned with the local flexibility of the chain on the length scale of

the channel size, D ≈ lp. In this context the anisotropy of the “monomers” matters, with a

flexible chain corresponding to lp/w ≈ 1 and a semiflexible chain corresponding to lp/w ≫ 1

[10].

In particular, we will focus on double-stranded DNA in a high ionic strength buffer that

screens electrostatic interactions, which has frequently been used as a model system for a

confined polymer [11]. In these conditions, DNA is clearly a semiflexible chain, with lp = 53

nm [12] and w = 4.6 nm [13]. As we will see, this high degree of anisotropy limits de Gennes’

model [1–3] to very small values of the fractional extension. The DNA used in experiments

can be quite long, normally tens of microns in length. As a result, the chain is flexible in

the global sense since L ≫ lp.

We already know that the semiflexible nature of DNA strongly affects its equilibrium

extension [13–16]. Figure 1 shows how the average chain extension, 〈X〉, depends on the

degree of confinement for a flexible chain and semiflexible chain. These data were generated

by modeling the chain as a series of Nb = 2048 touching beads [17] of size w that interact
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FIG. 1. (color online) Averaged extension of a flexible (lp = 5.3 nm, blue squares) and a semiflexible

(lp = 53 nm, red circles) chain containing 2048 touching beads of width w = 4.6 nm as a function

of the effective channel width, D−w, available to the chain. To aid the eye, lines corresponding to

the Odijk regime (solid), transition regime (dotted), and extended de Gennes/de Gennes regimes

(long dashed) are shown.

by a hardcore excluded volume interactions. To give the chain a persistence length of lp, a

bending potential is enforced between trios of beads according to the discrete wormlike chain

model [15, 18]. Analogous to our prior work [15], we generated an equilibrium ensemble of

chain configurations using Monte Carlo simulations with reptation, crankshaft and pivot

moves [19]. The simulation was run in each case until the statistical errors, corrected for

the time series autocorrelation [20], were smaller than the size of the plot symbols.

The classical theories [1, 2, 4] provide a complete description for the extension of the

flexible chain. Over almost the full range of extension, the flexible chain is in the de Gennes

regime [1, 2]. Here, the chain consists of isometric compression blobs of characteristic volume

D3 containing a subchain of length Lsub
∼= D5/3(wlp)

−1/3 [14]. The corresponding extension

is 〈X〉 ∼= L(wlp)
1/3D−2/3. A more precise calculation yields 〈X〉 ∼ D(ν−1)/ν with ν = 0.5877

being the Flory parameter [15]. In the tightest channels, the chain crosses over into the

Odijk regime [4], where the chain consists of a series of deflection segments. The extension

here is 〈X〉 = L[1− 2α (D/lp)
2/3] with α = 0.09137 a universal prefactor [21].

In contrast, we already know [13–16] that the classical theories [1, 2, 4] only correspond to

the limiting cases for the extension of a semiflexible chain. Indeed, in order for a semiflexble

chain to be able to reach a de Gennes regime, the polymer must have a length of at least
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L ∼= lp
3/w2 in a channel that is larger than D ∼= lp

2/w [14, 15]. As a semiflexible chain is

compressed by decreasing the channel size, the blobs become anisometric [13–15] with size

D2H , where H ∼= (Dlp)
2/3w−1/3. Each one of these cylindrical blobs contains a subchain

of length L∗

∼= lp
1/3D4/3w−2/3. This regime was named the “extended” de Gennes regime

[15] because the scaling for the extension in the de Gennes regime, 〈X〉 ∼= L(wlp)
1/3D−2/3,

extends to the case of anisometric compression blobs. When the channel size approaches

the order of the persistence length, D ≈ lp, the chain can no longer form blobs. Here the

behavior crosses into a transition regime where several simulations [15, 16], as well as our

results in Fig. 1, indicate that the extension scales like 〈X〉 ∼ D−1 [15, 16]. The free energy

of these configurations is unknown, and it is not clear yet if the behavior is universal. Finally,

when D ≪ lp, the other classical limit of Odijk [4] is recovered.

For DNA confined in a nanochannel, semiflexibility is a crucial aspect. As the anisotropy

of the monomers increases, the width of the transition regime grows; the maximum extension

in the extended de Gennes regime is compressed to 〈X〉/L ∼= (w/lp)
1/3. When DNA in a high

ionic strength buffer is used as a model for a confined polymer [7, 8], the extended de Gennes

regime and, in particular, the transition regime encompass almost the entire experimental

range of extensions [15]. Indeed, the existence of these additional regimes explains [15] the

disagreement between early experiments on DNA extension in nanochannels [8] and the de

Gennes model.

Let us now consider the mobility of a confined semiflexible chain. By applying an in-

finitesimal force fx that is uniformly distributed along the chain, the corresponding velocity

along the channel axis is

vx = µfx = 〈Ωxx〉fx (1)

where µ is the mobility of the chain. As seen in eq. (1), we can obtain the Kirkwood

approximation to the mobility [22, 23] from the appropriate component of the hydrodynamic

tensor, Ωxx, where the brackets refer to an average over the equilibrium distribution of chain

configurations.

For a flexible chain, the number of monomers inside the volume D3 where the walls

screen long-range hydrodynamic interactions is sufficiently high to permit a simple scaling

law. Simplifying eq. (1) in terms of the pair-correlation function, g(r), following de Gennes
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[2], yields

µ = N−1

∫

g(r)Ω(r)d3r (2)

In the blob theory [3] the pair-correlation function is replaced with c, the number concentra-

tion of segments inside a blob, and the hydrodynamic screening by the walls is approximated

by Ω(r) = 1/ηr for r < D and an exponential decay for r > D [2, 3], where η is the solvent

viscosity. Since we only need an approximate result, the remainder of the calculation is

simplified by using spherical coordinates and integrating over the solid angle [2],

µ =
4πc

N

∫ D

0

1

ηr
r2dr ≈

cD2

ηN
(3)

In the de Gennes regime, the monomer concentration in the blobs is c ∼= (Lsub/lp)/D
3, which

yields c ∼= w−1/3l
−4/3
p D−4/3. Recalling that N = L/lp, we recover the classic result [3]

µ ∼ (1/ηL) 〈X/L〉−1 (4)

In the extended de Gennes regime, the density of segments is (L∗/lp)/(D
2H), which again

yields c ∼= w−1/3l
−4/3
p D−4/3. As a result, the blob theory predicts the diffusion in the extended

de Gennes regime is also given by eq. (4).

The key assumption leading to eq. (4) is that the number of segments in the screening

volume, cD3, is large enough so that each blob is non-draining (Zimm). In other words,

the subchain comprising a blob entrains the fluid inside it, whereupon the segment-segment

hydrodynamics dominate and the subchain behaves hydrodynamically like a solid object.

Free draining (Rouse) behavior at the subchain level should arise when D ≈ 2lp. There

is now approximately one Kuhn length inside D3, which causes each segment to be an

independent friction center. In other words the segment-fluid hydrodynamic interactions

are dominant. In this limit, we would expect

µ ∼ (1/ηL) 〈X/L〉0 (5)

The question is whether the chain reaches the scaling of eq. (5) before it reaches the Odijk

regime (D ≪ lp). In the latter case, the chain is like a slender, confined rod. Its mobility

[24]

µ ≈
1

2π
ln

(

lp
2a

[

1− 〈X/L〉

2α

]3/2
)

(6)
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reflects the dominance of segment-wall interactions. The latter expression involves the bead

hydrodynamic radius, a. We chose a = 1.38 nm so that the chain mobilities in free solution

for lp = 53 nm matched experimental values for DNA [25]. While we raise this issue for

nanochannels, similar concerns about the draining behavior have been expressed for DNA

in slits [26].

To determine if and when the chain crosses over to eq. (5), we computed the Kirkwood

mobility through a Monte Carlo integration of eq. (1) [27]. For a given chain configuration,

we computed the 3× 3 chain hydrodynamic tensor

Ω =
1

Nb
2

Nb
∑

i,j

[

δij
6πηa

I+ (1− δij)Ω
OB(rij) +ΩW(ri, rj)

]

(7)

In the latter, δij is the Kronecker delta, ri and rj are the positions of bead i and j re-

spectively and rij = rj − ri. The hydrodynamic tensor includes a self-diffusion term, a

free-solution Oseen-Burgers tensor [28], ΩOB, and a wall term, ΩW, due to the effects of

the no-slip condition at the channel boundaries. The Oseen-Burgers tensor is acceptable

in this calculation because the beads are hard spheres, and do not suffer from unphysical

behavior caused by bead-bead overlap. The wall term was calculated using a numerical solu-

tion of Stokes equation, similar to Jendrejack et al. [28]. We employed a second-order finite

difference approach with a staggered, three-dimensional, uniform, Cartesian mesh [29] and

mass-conserving boundary conditions. Due to the prohibitive computational time needed to

solve the hydrodynamic problem for each chain configuration, the wall term was calculated

and stored on a grid, and subsequently linearly interpolated during Monte Carlo averaging.

Finally, we note that in each case the statistical errors of the computed diffusivity, corrected

for the time series autocorrelation [20], are smaller than the size of all plot symbols.

Figure 2a shows the results for the mobility of DNA as a function of its extension. In the

largest channels, corresponding to the smallest fractional extensions, the channel provides

minimal confinement and the chains are approaching the Zimm free solution mobility, µ ∼

L−3/5. Outside of this limit, the friction due to the walls is substantial. If we neglect the

wall term in eq. (7) for a channel size of 80 nm, the resultant mobility is more than 5 times

larger.

The key result is that the Rouse scaling in eq. (5) encompasses all of the extensions seen in

experiments for DNA [8]. In contrast, Fig. 2b shows that eq. (4) is a reasonable description

for the flexible chain all the way to the transition to the Odijk regime of eq. (6). To be more
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FIG. 2. (color online) Mobility versus extension. All simulations correspond to w = 4.6 nm and a =

1.38 nm. (a) Results for five different chain lengths for lp = 53 nm. The shaded region corresponds

to the extensions seen in DNA experiments [8]. (b) Results for three different persistence lengths

for L = 9.42 µm (Nb = 2048 beads). The dotted line is the scaling of eq. (4) and the dashed line

shows the scaling of eq. (5). The solid lines are the approximation in eq. (6). The vertical lines are

the values for the onset of the scaling 〈X〉/L ∼ D−1 for the 53 nm chain (red, 〈X〉/L = 0.15) and

the 23 nm chain (green, 〈X〉/L = 0.2).

quantitative, linear regression gives µ ∼ 〈X〉−0.874 (R2 = 0.998) which agrees very well with

the value of µ ∼ 〈X〉−0.61/0.7015 obtained from other flexible chain calculations [30]. We also

simulated an intermediate persistence length lp = 23 nm and found an intermediate result;

for short extension this chain obeys de Gennes scaling but it still exhibits a broad transition

towards the Odijk result.

In the case of the flexible chain, the crossover between de Gennes and Odijk mobilities

is narrow, mirroring the extension behavior. If the confinement does not force a rod-like

conformation, this chain is so flexible that it can only form non-draining blobs. In the

semiflexible case, the large monomer anisotropy leads to a wide gap between the de Gennes

regime and the Odijk regime for the extension. This gap closely aligns with the beginning
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and ending of the mobility plateau in Fig. (2)b. Thus the existence of additional regimes

for the extension of semiflexible chains explains both the existence of the mobility plateau

and the fact that it grows with increasing persistence length.

While we have focused exclusively on the dynamics of DNA in a high ionic strength

buffer, where electrostatic interactions are screened, there are DNA barcoding devices [5]

that use high ionic strengths to stiffen the DNA backbone. As the ionic strength decreases,

the predicted values for the effective width and persistence length begin to converge [31].

Our analysis thus predicts that DNA will obey the de Gennes prediction in eq. (4) in a

sufficiently low ionic strength such that lp/w ≈ 1 and a large enough channel such that

this very high persistence length chain can form compression blobs. These experiments are

technically challenging, since the length of DNA required to reach the de Gennes regime in

a low ionic strength buffer is enormous.

In this Letter, we have clearly shown that the hydrodynamics of confined semiflexible

chains deviate significantly from the classic prediction for a flexible chain in eq. (4) [2, 3].

As there are a large number of publications using DNA in a high ionic strength buffer as a

model polymer, it is important to keep in mind the stark differences between the dynamics

of semiflexible chain such as DNA and the more flexible chains often encountered in polymer

physics [11].
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