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We consider electrons on a honeycomb or triangular lattice doped to the saddle point of the
bandstructure. We assume system parameters are such that spin density wave (SDW) order emerges
below a temperature TN and investigate the nature of the SDW phase. We argue that at T ≤ TN

the system develops a uniaxial SDW phase whose ordering pattern breaks O(3)×Z4 symmetry and
corresponds to an eight site unit cell with non-uniform spin moments on different sites. This state
is a half-metal – it preserves full original Fermi surface, but has gapless charged excitations in one
spin branch only. It allows for electrical control of spin currents and is desirable for nano-science.

Introduction: The electronic properties of single layer
graphene have been the subject of considerable experi-
mental and theoretical interest [1]. Near half-filling, a de-
scription in terms of non-interacting Dirac electrons cap-
tures the essential physics, since interactions effects are
suppressed by the low density of states (DOS). A sharply
different behavior arises when graphene is strongly doped
to 3/8 or 5/8 filling [2]. At this filling, a divergent den-
sity of states and nested Fermi surface (FS) conspire to
produce weak coupling instabilities to an extensive buf-
fet of ordered states, including spin density waves (SDW)
[3, 4, 7], Pomeranchuk metals [8], and d wave supercon-
ductors (SC) [5, 6, 9]. A similar situation arises on a
triangular lattice at 3/4 filling [10, 11].

It has recently been established using renormalization
group (RG) methods [5] that the two most relevant insta-
bilities at weak coupling are towards SDW and a d-wave
SC. Other potential instabilities, like a charge-density
wave have much smaller susceptibilities. The SDW ver-
tex is the largest at intermediate RG scales, but su-
perconducting vertex eventually overshoots it, making
d-wave superconductivity the leading weak coupling in-
stability at the Van Hove filling. The SC state has a
d+ id gap structure and breaks time-reversal symmetry
[5]. Upon doping away from Van-Hove filling, the Cooper
and SDW channels decouple at a scale set by doping, and
the RG flow is altered. In this situation, the SDW, which
is the largest at intermediate RG scales, may become the
dominant instability, and numerical functional RG stud-
ies found [6] that SDW is indeed the leading instability
in substantially wide doping range away from 3/8 or 5/8.
Previous work on SDW order argued that the SDW state
is non-coplanar and has non-zero spin chirality [3, 7, 10].
Such a state gaps out the entire Fermi surface (FS).

We argue that the situation is more complex than orig-
inally thought, and the chiral SDW state is present only
at the lowest temperatures. Over a wide intermediate
range of temperatures, a different SDW state emerges
in which SDW order develops simultaneously at three
inequivalent wavevectors Qi, but the three vector order
parameters are all aligned along the same axis. This state
has an eight site unit cell with non-uniform spin moments

a) b)

FIG. 1: (Color online) a) The Fermi surface at the doping level
of interest is a hexagon inscribed within a hexagonal Brillouin
zone (BZ), for both honeycomb and triangular lattices. The
FS has three inequivalent corners, which are saddle points
of the dispersion, marked by a vanishing Fermi velocity and
a divergent density of states. The three inequivalent saddle
points Mi are connected by three inequivalent nesting vectors
Qi, each of which is equal to half a reciprocal lattice vector,
such that Qi = −Qi. b) Spin structure for the uniaxial SDW
state. The SDW order quadruples the unit cell to a unit cell
with eight sites (shaded). The enlarged unit cell has a large
spin moment 3∆ on two sites and a small spin moment −∆
on the other six. The total spin on each unit cell is zero.

and zero net magnetization (Fig. 1b). Such a state can-
not be accessed starting from a spin Hamiltonian for local
moments with a fixed length, and can only be accessed
starting from a model of itinerant fermions. We show
that in this state, unlike in any other known SDW state,
the chemical potential shifts proportionally to the SDW
order parameter preserving the original Fermi surface for
one spin branch and gapping out the other spin branch.
The uniaxial SDW state is therefore a ‘half-metal’ that
allows for electrical control of spin currents. Such a state
is highly desirable for nano-science applications.
The model: For definiteness we focus on doped

graphene at 3/8 filling. Our point of departure is the
tight binding model [12], with the nearest-neighbor dis-
persion
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where µ = −t1 at 3/8 filling. The FS then forms a per-
fect hexagon inscribed within a hexagonal BZ (Fig. 1a).
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The perfect nesting of the FS in doped graphene is quite
robust – it is broken only by third and higher neigh-
bor hoppings, which are generally quite small. The
Fermi velocity vanishes near the hexagon corners M1 =
(π/3, π/

√
3), M2 = (2π/3, 0), M3 = (π/3,−π/

√
3),

which are saddle points of the dispersion:

εM2+k ≈ 3t1
4

(k2y−3k2x), εM1,3+k ≈ −3t1
4

2ky(ky∓
√
3kx),

(2)
where each time k denotes the deviation from a saddle
point. Saddle points give rise to a logarithmic singularity
in the DOS and control the SDW instability at weak cou-
pling. There are three in-equivalent nesting vectors con-
necting in-equivalent pairs of saddle points (see Fig. 1a):

Q2 = (0, 2π/
√
3), Q1,3 = (±π/3,−π/

√
3). (3)

Each Qi is equivalent to −Qi modulo a reciprocal lattice
vector.
For the interactions we use the low energy model from

[5], which provides an exact description of the system in
the weak coupling limit. This model contains four in-
teractions – density-density, exchange, pair-hopping and
forward scattering, labeled g1, g2, g3, g4, respectively. Of
these, the interactions g4 and g1 do not couple to spin
density waves [5] and may be safely ignored [16]. The
SDW physics is controlled by the density-density interac-
tion g2 (|k,k+Qi〉 → |k,k+Qi〉), and the umklapp pair-
hopping interaction g3 (|k,k′〉 → |k+Qi,k

′+Qi〉). The
partition function in the SDW sector can be written as

Z =
∫

D[ψ†, ψ] exp(−S[ψ†, ψ]), where S =
∫ 1/T

0
L(k, τ)

and
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−
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g3ψ
†
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†
a,βψb,βψb,α − g2ψ

†
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†
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where the action is written in terms of electron operators,
a, b are patch labels, and α and β are spin components.
Each nesting vector Qi has associated with it an SDW

order parameter ∆i = ∆a,b = g2+g3
3

∑

k〈ψ†
a,ασαβψb,β〉.

The condition for the emergence of each ∆i is the same:

((g2+g3)/t1) log
2 t1/TN = O(1) [5], leaving a large num-

ber of SDW states as potential candidates. We study
the selection of the SDW order within Ginzburg-Landau
theory and by comparing different SDW solutions in
the mean-field approximation for Eq. (4) at arbitrary
T < TN .

Ginzburg-Landau theory: To construct the Ginzburg-
Landau theory, we decouple the quartic interaction terms
by restricting the interaction to the spin channel and a
Hubbard Stratonovich transformation to collective spin
variables∆i. Note that the Hubbard Stratanovich trans-
formation is exact and does not introduce any approxi-
mation. We integrate out the fermions in the Matsubara
frequency representation and obtain an action in terms
of ∆i in the form

L = T

∞
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For T ≈ TN , we can expand (5) in small ∆i/TN . It is
useful to define the expansion coefficients

Zi = T
∑

ωn

∫

d2k

(2π)2
ξi (6)

where the integrands ξi are expressed in terms of
fermionic Green functions G = (iωn − εk − µ)−1, Gi =
(iωn−εk+Qi

−µ)−1, and Gi+j = (iωn−εk+Qi+Qj
−µ)−1

as

ξ1 = G2G2
3, ξ2 = G2G3G1,

ξ3 = GG3G1G1+3, ξ4 = G2G2
3G

2
1. (7)

Diagrammatically, Z1 –Z3 are given by ‘square’ diagrams
with four fermionic propagators and σαβ in the ver-
tices, and Z4 is given by a ‘hegagonal’ diagram with six
fermionic propagators, (see Fig. 2). The free energy eval-
uated at T ≈ TN can be expressed in terms of these
coefficients as

L ∝ α(T − TN)
∑
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where α is an inessential positive constant.
The quadratic term and the first quartic term in (8)

set the overall magnitude of ∆2
tot =

∑

i∆
2
i , but do not

differentiate between different SDW states. The second
quartic term in (8) determines whether SDW order devel-
ops only at one nesting vector, or at all three (depending
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FIG. 2: (Color online) The terms quartic in ∆ are pro-
duced by processes represented diagrammatically by square
diagrams. The diagrams for Z2 and Z3 correspond to pat-
terns ∆3,∆3,∆1,∆1 and ∆3,∆1,∆3,∆1, respectively. The
sixth order chirality sensitive term is produced by ‘hexagonal
diagrams.’ Sample square and hexagonal diagrams are shown
above. The integrals are dominated by momenta that bring
all the fermion propagators to the vicinity of one of the saddle
points of the dispersion.

on the sign of Z2 − Z1 − Z3). Finally, the third quartic
term and sixth order term control the relative orientation
of the vector order parameters, if SDW order develops at
multiple wavevectors. Close to TN the expansion to or-
der ∆4

i is generally sufficient, but we include the sixth
order term because Z3 is suppressed by an extra factor
of TN/t1, which is exponentially small in the weak cou-
pling limit. The relative smallness of Z3 arises because
in the integrals for Z1, Z2, and Z4, all fermions can be
simultaneously brought to the saddle points, whereas in
the integral for Z3, three fermions can be brought simul-
taneously to saddle points, but the remaining fermion
stays far away from the saddle point and the FS.
We evaluate the coefficients Z1 – Z4 to leading order

in small TN/t1 and obtain [16]

Z1 =
0.20 log t1

TN

π4T 2
c t1

, Z2 =
0.58

π4T 2
N t1

,

Z3 = − 0.08

π2T 2
N t1

TN
t1
, Z4 = − 0.1

T 4
N t1

(9)

The positivity of Z1 guarantees a second order phase
transition, with the type of SDW order depending on the
signs and relative magnitudes of Z2, Z3, and Z4. Since
Z3 is smaller by TN/t1 than Z1,2, and Z2 is smaller by
log t1

TN
than Z1, it follows that Z2 − Z1 − Z3 < 0, so

the system forms SDW order simultaneously at all three
nesting vectors (the 3Q state). Meanwhile, the relative
orientation of the three SDW order parameters is con-
trolled by the sign of Z3 at the smallest ∆i, and by the
sign of Z4 at somewhat larger ∆i. Both Z3 and Z4 are
negative and favor the non-chiral SDW order with the
three ∆i all aligned along the same axis.
An order parameter of the form ∆

(

eiQ3·r + eiQ1·r ±
eiQ2·r

)

leads to spin moments on the lattice of the form
shown in Fig. 1. A quarter of lattice sites have spin mo-
ment 3∆, the other three quarters have moment −∆.
Such an order cannot be obtained from any spin Hamil-
tonian for local moments of constant magnitude on ev-

ery site. Our result differs from earlier mean-field analy-
sis [11] which found non-coplanar insulating SDW order
at weak coupling. We note, however, the 3Q state that
we found, with non-equal spin length on different sites,
was not considered in that work and other earlier consid-
erations of SDW order. We found analogous results for
fermions on a triangular lattice at Van Hove filling, which
are described by an identical low energy theory provided
we neglect further neighbor hopping.
Properties of a uniaxial SDW: Is the uniaxial SDW

state a metal or an insulator? To address this issue we
need to compute the fermionic spectrum. Without loss
of generality, we take the SDW to be uniaxial along the
z axis, so that Sz is a good quantum number, and spin-
up and spin-down fermions decouple. Consider the state
with ∆1 = ∆2 = ∆3 = ∆ẑ σ3. Up spins near the three
Van Hove points are described by a simple Hamiltonian

H =





ε1,k − δµ ∆ ∆
∆ ε2,k − δµ ∆
∆ ∆ ε3,k − δµ



 (10)

where ε1, ε2, ε3 are the dispersions near the Van Hove
points, Eq. (2), and δµ is the SDW-induced shift of the
chemical potential. The 3×3 Hamiltonian describing the
spin down branch is obtained by taking ∆ → −∆. At
k = 0 (i.e., at Van Hove points) the energies of spin-
up excitations Ek − δµ are −∆,−∆, and 2∆, and the
energies of spin-down excitations are ∆,∆, and −2∆.
In conventional SDW states (e.g., SDW on a 2D square
lattice) δµ/∆ ∝ TN/EF is negligibly small and can be
safely neglected. We find that in our case δµ = −∆, so
that gapless excitations arise in the spin-down spectrum.
To see the unexpected shift of the chemical potential,

we diagonalize Eq. (10) and the corresponding equation
for down spins and inspect six branches of excitations.
We find that fixing δµ = −∆ ensures that both in the
paramagnetic and in the 3Q uniaxial SDW state there
are four bands with Ek ≤ µ and two bands with Ek ≥ µ
for all momenta in the reduced BZ (see Fig. 3). Since the
chemical potential is fixed by the constraint that the total
number of electrons (equal to the number of states below
the chemical potential) must not change between ∆ = 0
and ∆ 6= 0 [13], it follows that we must set δµ = −∆. For
verification, we computed the thermodynamic potential
Ω(∆, µ) from (5), numerically solved the simultaneous
equations ∂Ω/∂∆ = 0 and ∂Ω/∂µ = −N , and confirmed
that δµ = −∆ to a high accuracy.
Having determined that δµ = −∆, we find from (10)

that gapless excitations emerge when ε1,k ε2,k ε3,k = 0,
which has solutions along three lines passing through
each Van Hove point. Two of then coincide with the
original FS, the third is directed towards the center of
the BZ. The 3Q uniaxial SDW state is then obviously a
metal. We emphasize, however, that gapless states exist
only for the electrons with spin projection opposite to
∆. The electrons with spin projection along ∆ are fully
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FIG. 3: (Color online) a) Excitation spectrum εk = Ek−δµ of
the 3Q uniaxial state. Negative k are along the FS, positive k
are along the BZ boundary in the original BZ (along kx in the
reduced zone). Placing the chemical potential at δµ = −∆
ensures that four bands lie below the chemical potential (hor-
izontal dotted line) and two lie above for all k, irrespective of
the value of ∆. Thus the choice µ = −∆ conserves electron
number. Excitations with spin projection opposite to ∆ are
in blue (solid), along ∆ are in red (dashed) lines. Note that
gapless excitations arise in the spin-down branch only. b) Free
energy difference δF = Funiaxial −Fchiral between the 3Q uni-
axial SDW state and the chiral state, evaluated in the mean
field approximation for the honeycomb lattice Hubbard model
with g2 = g3 = U = 1.7t1 (TN ∼ 0.002t1). The 3Q uniaxial
state has lower Free energy over a wide range of intermediate
temperatures, but at the smallest T the non-coplanar, chiral
state, studied in earlier works [3, 7, 10], has lower Free energy.

gapped. Since a Fermi surface exists for one spin pro-
jection only, we dub this state a ‘half metal.’ We found
an analogous ‘half-metal’ spectrum for the 3Q uniaxial
SDW phase on the triangular lattice.
The half-metallic nature of the SDW should manifest

itself in numerous experiments. For example, in tunnel-
ing experiments conducted with electrons spin polarized
along the z axis, a hard gap will be seen for down spins,
but a Fermi surface will be seen for up spins. Further-
more, since the low energy charged excitations involve
up spins only, any charge currents will necessarily also
be spin currents. Thus, the half metal state allows for
electrical control of spin currents, which may be benefi-
cial for nanoscience applications.
Order parameter manifold: The uniaxial SDW order

obviously breaks O(3) spin-rotational symmetry. It also
breaks Z4 discrete symmetry associated with either par-
allel or antiparallel ordering of ∆i, i.e., in addition to the
(∆,∆,∆) state which we considered above, there are also
(∆,−∆,−∆), (−∆,∆,−∆), and (−∆,−∆,∆) states.
These states have an identical structure of fermionic ex-
citations, and correspond to the four in-equivalent ways
to choose which two of the eight sites of the SDW unit
cell carry large spins (see Fig. 1(b)). Equivalently, the
three other states from the Z4 manifold are obtained from
the (∆,∆,∆) state by shifting the origin of coordinates

to the center of one of three neighboring hexagons. An
interesting possibility, which deserves further study, is
that Z4 symmetry can be broken before O(3) symmetry,
leading to a nematic-like state [14].

The phase diagram: Thus far we have constructed
the Ginzburg-Landau expansion in small ∆/TN . This ex-
pansion becomes less justified as we move towards zero
temperature. To investigate the behavior at arbitrary
T we calculate numerically the full Free energies of the
various SDW states from (5). Upon doing this, we find
that the 3Q uniaxial state has the lowest Free energy
over a wide range of intermediate temperatures, roughly
between TN/2 and TN , but undergoes a first order transi-
tion at a lower temperature to the insulating chiral SDW
state discussed in earlier works [3, 7, 10]. We show the
Free energy profile in Fig. 3b. We found this behavior
both for graphene and for fermions on a triangular lat-
tice. Intuitively, the chiral SDW state wins at the lowest
T because it has spin-degenerate excitations and opens a
full spectral gap, unlike the half-metal state.

The Free energy profile in Fig. 3b is for weak/moderate
coupling, when TN/t1 ≪ 1. At TN ∼ t1, the phase dia-
gram is more complex. For completeness, we discuss the
forms of Zi and the phase diagram at TN ∼ t1 in the
supplementary material [16]. The ordering temperature
TN depends sensitively on the strength of the microscopic
interactions. For graphene doped near the saddle point
we estimate TN ≈ 3−30K, whereas t1 ≈ 3eV [15]. Thus,
at least for doped graphene, we should be decisively in
the limit TN/t1 ≪ 1, where our calculations apply.

Conclusion: We considered in this work the SDW in-
stability on the honeycomb and triangular lattices, when
doped to the saddle points of the dispersion. The SDW
instability is subleading to a d−wave superconducting in-
stability at weak coupling, but becomes the leading insta-
bility if superconductivity is suppressed. We found that
if the SDW ordering temperature TN is much smaller
than the fermionic bandwidth, then a uniaxial SDW or-
der develops simultaneously at three inequivalent nesting
vectors. This has an order parameter manifold O(3)×Z4

and corresponds to the ordering pattern shown in Fig.1.
Such a state can only be obtained from an model of itin-
erant electrons with interactions, and not from a spin
model of local moments. We found that such SDW state
is a half-metal in which gapless excitations exist in one
spin branch only. Such a state may be beneficial for
nanoscience applications particularly because charge cur-
rents will necessarily also be spin currents, which allows
for electrical control of the latter.
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