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We consider the sticking of a fluid-immersed colloidal particle with a substrate coated by polymeric
tethers; a model for soft, wet adhesion in many natural and artificial systems. Our theory accounts
for the kinetics of binding, the elasticity of the tethers and the hydrodynamics of fluid drainage
between the colloid and the substrate, characterized by three dimensionless parameters: the ratio of
the viscous drainage time to the kinetics of binding, the ratio of elastic to thermal energies and the
size of the particle relative to the height of the polymer brush. For typical experimental parameters
and discrete families of tethers, we find that adhesion proceeds via punctuated steps, where rapid
transitions to increasingly bound states are separated by slow aging transients, consistent with recent
observations. Our results also suggest that the bound particle is susceptible to fluctuation driven
instabilities parallel to the substrate.

The dynamics of interfacial attachment in a fluid
medium, mediated by specific adhesive bonds, is of in-
terest and applicability to several physical and biologi-
cal systems. Although details regarding the microscopic
structure of tethers, distribution of attachment sites and
geometry of the substrates do vary greatly, the essen-
tial physics involved is common to various phenomena
including the coagulation of subunits in biochemical pro-
cesses [1], binding using DNA covered nano-particles [2],
aging of a stuck colloid [3], tethering and adhesion of cells
[4–8] and the capture efficiency of immersed, sticky sur-
faces [9]. In these scenarios, substrates come into close
proximity allowing the longest polymeric tethers to pro-
vide the initial attachment between substrates. This ini-
tial attachment draws the two substrates closer, draining
the intervening fluid out, and allowing shorter polymeric
tethers to themselves provide further attachment. Here
we explore this generic attachment process as a function
of the basic geometric, structural and kinetic parameters
governing the process.
A minimal model of the phenomena may be idealized
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FIG. 1: (a) and (b) Schematic of system: The center of the
particle of radius a lies a distance a+h0(t) above a substrate.
The close-up on the right shows a two family system, with the
rest lengths ℓ1 and ℓ2. (c) The binding affinity of a tether,
k+, follows from a Kramer’s analysis, saturating when binding
events are very likely.

in terms of a fluid-immersed model spherical colloid of
radius a that can stick to a flat, rigid substrate grafted
with adherent elastic binders, illustrated in Figure 1(a).
The fluid is assumed to have a viscosity, µ, density ρ
and temperature θ, with the colloid center to be at a
distance (a + h0(t)) from the rigid substrate, as shown
in Figure 1(b). The adherent binders are idealized as
polymers with one end attached to the substrate and the
other capped by a sticky head of radius ab. We model
each binder as a linear Hookean spring of stiffness Ks

and mean rest length ℓ [10, 11]. In the unattached state,
the binders are free-floating with lengths that fluctuate
with a temperature dependent variance about the mean
ℓ. When subject to a favorable thermal kick, the binder
heads touch the particle and stick instantaneously, exert-
ing an elastic force on the particle. If binding events are
rare and the mean rest lengths of tethers are well spaced,
then the particle may move towards the substrate in a
step-wise manner, where long intervals with relatively lit-
tle motion are punctuated by short busts of transitions
to more bound states closer to the substrate; indeed this
phenomenology of punctuated ageing is suggested by re-
cent experiments [3].

Owing to the large aspect ratio of the gap between
the colloid and the substrate, the viscous drag on the
sphere is dominated by lubrication forces and is greater
than the viscous drag on the adhesive molecule provided
a/h0 ∼ 102 ≫ 1 and a/ab ∼ 104 ≫ 1, respectively,
as suggested using typical values from cited literature.
Additionally, this disparity in sizes allows us to neglect
the thermal agitation of the particle while retaining the
fluctuations in the binder lengths. In the limit where the
areal density of bonds, n0, is low (typical values being
n0ℓ

2 ∼ 10−9 ≪ 1, the attached binders do not impede
the flow of fluid [12–14].

Two additional simplifications allow us to focus on the
dynamics normal to the substrate and ignore tangential
displacements of the settling sphere. First we neglect the
effect of the shear flow on the mean rest length of the
adhesive bonds. Secondly we neglect the shearing effect
of the mean flow on the binders thus causing them to
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bind at an angle to the vertical. This is reasonable pro-
vided the torque due to thermal fluctuations dominates
the torque on the binder due to the streaming flow. For
the shearing flow to have negligible effect on the statisti-
cal properties of the bonds we require γ̇µℓ/κ ≪ 1 with κ
being the characteristic stiffness (a mean field value) of
the bonds. When viscous forces dominate, γ̇ ∼ τ−1

µ . On
the other hand, when the settling process is controlled
by binder kinetics, γ̇ ∼ τ−1

adh, which leads to much larger
shear rates. In this limit one must take into account the
change in the mean rest length as a function of the shear
rate. We restrict our analysis to the first scenario.

Since the motion of the particle towards the substrate
drives the fluid out of the intervening gap, the effect of
inertia is quantified via the Reynolds number based on
the gap size Reh0

≡ µ(dh0/dt)(h0/a)
2a/ρ ≪ 1. The

effect of inertia at the colloid scale Re ≡ µ(dh0/dt)a/ρ
is also typically less than unity. For a neutrally buoyant
colloidal particle at height

h(t) = h0(t) + a(1−
√

1− r2/a2) (1)

(r being the radial coordinate) above a substrate that
is decorated with Hookean tethers (spring constant Ks)
parametrized by their rest length ℓ, and number density
n(ℓ, t), the equation of motion is

6πµa2

h0

dh0

dt
+2πKs

∫

ℓ

dℓ

∫ a

0

n(r, ℓ, t)(h−ℓ)rdr = 0. (2)

Here the first term in Eq. 2 is the leading order force on
the sphere that models the increasing difficulty in drain-
ing fluid out of the gap as h0 → 0 [15], while the second
term characterizes the elastic forces on the colloid due to
the bound tethers [10, 11]. In many biological systems,
the distribution of lengths of the tethers is bimodal [11],
and so here we study a two family system of binders for
which

n(ℓ, t) = n1(t)δ(ℓ − ℓ1) + n2(t)δ(ℓ − ℓ2), (3)

ni(t) being the areal density of bound bonds of the ith
family attached at a height h at time t and δ(s) is the
Dirac delta function. To close equations (1)-(3), we need
to specify equations for the binder dynamics. Assuming
first order kinetics for the attachment and detachment
process [10, 11, 16] we write

∂ni

∂t
= kon(ni,0 − ni)− koffni (4)

where ni,0 (i = 1, 2) is the total area density (attached
plus detached) of bonds, kon is the attachment rate and
koff is the detachment rate. Given some initial condi-
tions, equations (1-5) constitute a set of coupled, non-
linear equations for the height h as a function of n1 and
n2.

Since the particle is being drawn closer to the substrate
rather than being pulled away [11, 17], we choose the off-
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FIG. 2: The height of the particle, H0 as a function of time,
T for a one family binder system with N2,0 = 0, α = 100,
β = 100, q = 500 and H0(T = 0) = 1. (a)Koff = 0: An initial
steep descent to a critical height is followed by a slow aging
process with Heq decaying exponentially to 0. (b) Koff 6= 0:
Unlike in (a) the region of adhesion is bounded and the par-
ticle settles to a non-zero equilibrium height. Insets show the
evolution of attached bond density when there is no unbinding
and where there is some unbinding.

rate to be a constant and explore the consequences of a
displacement dependent attachment rate. Provided the
settling rate is slow, one may assume that binders attach
at a rate that depends solely on the distance the heads
have to traverse in order to stick to the particle. In this
limit kon depends on the extension h(t) − ℓ. Adopting
a Kramers-style argument [16, 18], in the limit of large

extension h ≫ ℓ + (2kBθ/Ks)
1

2 the asymptotic approxi-
mation to the mean first passage time and thus kon yields
(Supplementary Material - I)

kon ≈ Db

√
2(h− ℓ)

( Ks

kBθ

)
3

2

e
−

Ks

2kBθ
(h−ℓ)2

(5)

Db being the diffusion constant associated with the
binder head. For small extensions, the asymptotic ex-
pression (5) is not valid. We note that the maximum

value, kmax
on is attained at h = ℓ+ (kBθ/Ks)

1

2 . To obtain
a tractable, continuous expression, we set kon = kmax

on for

h ≤ ℓ+ (kBθ/Ks)
1

2 .

Typical values for parameters appearing in equations
(1)-(5) are a ≈ 10−6m, µ ≈ 10−2 Pa.s, n0 ≈ (107 −
109)m−2, ab ≈ 10−10m, ℓ ≈ 10−8m, and Ks ≈ (0.01 −
10)× 10−3 Nm−1. To make sense of these values, we in-
troduce the dimensionless variables H ≡ h/ℓ1, R ≡ r/a,
T ≡ t kmax

on , Li ≡ ℓi/ℓ1 and Ni ≡ ni/ni,0. Then, equa-
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tions (1)-(5) can be written as the following dimensionless
versions

α

H0

dH0

dT
=

∫ 1

0

[N1(1−H) +N2(L2 −H) ]R dR, (6)

H(R, T ) = H0(T ) + q(1 −
√

1−R2), (7)

and

∂Ni

∂T
= K(i)

on (R)(1 −Ni)−KoffNi, (i = 1, 2), (8)

where the attachment rate constants in dimensionless
variables are K

(i)
on = 1 for H ≤ ( 1

2β )
1

2 + Li and K
(i)
on =

(2β(H − Li)
2)

1

2 e−β(H−Li)
2

for H > ( 1
2β )

1

2 + Li. Three

important dimensionless parameters appear in equations
(6)-(8): the parameter q ≡ a/ℓ1 (typical values ≈ 102 ≫
1) characterizes the finite curvature of the particle, the
parameter β controls the attachment rate and is the
ratio of the characteristic elastic energy to the ther-
mal energy β ≡ (12Ksℓ

2
1)/kBθ (β ≈ 20, corresponding

to bonds with rare binding events), while the param-
eter α ≡ 3µ(n1,0Ksℓ1)

−1(kmax
on ) contrasts the viscous

time µ/(n1,0Ksℓ1) and the chemical limiting binding time
(kmax

on )−1. Of special relevance is the limit α ≫ 1, which
corresponds to a system where the viscous drainage is
the rate limiting step and not the time between binding
events. Finally, ρ ≡ n2,0/n1,0 is the ratio of the num-
ber density of total bonds of the two families and thus a
measure of the contrast in grafting densities.
The sticking process is initiated with the base of the

sphere at the rest height of the tallest family chosen here
to be family 1, i.e. H(0) = 1, with no initial bonds, so
that N1(0) = N2(0) = 0. We start with a consideration
of the case of a single family of irreversible bonds so that
N2(R, T ) = 0 and Koff = 0. Then, solving the system
(6-8) numerically shows that the kinetics of particle cap-
ture has two regimes - a rapid settling regime (I) followed
by a much slower aging regime (II) as shown in Figure
2(a). In the settling regime, bonds attach over a charac-
teristic region and the colloid descends rapidly towards
the surface. This phase terminates at a height when cen-
tral tensile forces, which push the sphere away from the
substrate, balance the dominant peripheral compressive
forces over a region with vertical extent β−1/2. A scal-
ing estimate of this height gives (1 −H∗

0 ) ∼ β−1/2. The
characteristic region of adhesion over which the initial
binding occurs is R∗ ∼ q−1/2β−1/4 (Supplementary Ma-
terial - II). Within this region all bonds are in their bound
state. Outside this region bonds attach very slowly - a
larger fraction binding as time increases. The region of
adhesion grows very slowly as the bonds need to make
very long excursions compared to their rest length to be
able to stick to the particle, and the balance between
the attractive forces due to slowly attaching bonds and
viscous resistance to fluid drainage determines the set-
tling speed (Regime II). We find that the initial stages of
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FIG. 3: Adhesion dynamics due to a two family system for
parameters N2,0/N1,0 = 100, Koff = 0, α = 100, β = 100,
L2 = 0.25 and q = 500. a) Height, H0 versus time, T . b) and
c) b) N1 and N2 as a function of radial distance from origin,
R, and time, T , respectively.

regime II may be described analytically (Supplementary
Material - II) Past the initial rapid descent, the sphere
begins to descend slowly with the sphere height decaying
as

H0 ≈ H∗

0 exp(−t/τaging), with τaging ∼ qαβ (9)
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FIG. 4: The transverse linear elastic compliance, Keff , due to
the linear elasticity of attached binders for (a) koff = 0 and
koff > 0. As the sphere settles, the sign of the resultant elastic
force changes. Parameter values are the same as in Fig 2.
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setting the characteristic time scale of the aging phase.
This scaling for the decay rate is valid so long as the
radius of adhesion is less than

√

H0/q. The ultimate

dynamics once binders attach at R ≫
√

H0/q is how-
ever even slower than the above equation suggests (Sup-
plementary Material II) and the sphere makes physical
contact with the substrate only as T → ∞ due to the di-
vergence of the viscous drag term. In the final state, the
binders exert a net positive force pushing the sphere to-
wards the surface and hence energy has to be expended in
order to dislodge the sphere. This final bound state can
be understood as the end result of a series of differential
stages. At each stage of the descent, additional bonds
must attach to the periphery (at increasingly larger R),
and then draw the colloid closer to the substrate below
until the elastic forces are in approximate balance with
the adhesion radius attaining a certain value. The sphere
waits (albeit, momentarily) and then executes the next
stage once bonds attach again beyond the adhesion re-
gion established previously.
The settling scenario changes quite dramatically if one

allows for even a small detachment rate. In Figure 2(b),
we show that the tail of the bound tether distribution
now has a cutoff at H = Hcutoff determined by the de-

tachment rate, K
(1)
on ≈ e−β(Hcutoff−1)2 = Koff thereby

modifying the equilibrium height to a non zero offset that
is O(

√

| lnKoff |) provided that q ≫ 1. In the absence
of any other influences contact between the particle and
substrate is avoided and the particle settles down as a
non-zero height.
Inclusion of additional families of tethers with different

equilibrium height distributions leads to a series of punc-
tuated regimes of adhesion. In each regime, the slow
aging process at the previous level results in the colloid
being brought into reach of the shorter families of tethers.
Their binding results in the rapid motion of the colloid
before slowing and a subsequent repeat of the same pro-
cess. Figures 3(a-c) displays the effect of having a second
family of bonds with ℓ2 < ℓ1 with the bonds attaching
irreversibly. Four distinct regimes are seen - the first
corresponds to the initial settling regime for the single
family case, the second is the aging dynamics associated
with the first family, drawing it towards the substrate
slowly. When H0 ∼ ℓ2 + 1/

√
2β a strong transition in

the particle position is seen - evidenced by the knee in
figure 3 a) at a time T ≈ T ∗. An increasing number
of shorter bonds from the second family bind onto the
particle and the exponentially slow decay transitions to
a more rapid descent. An estimate of the time interval,
T ∗, may be obtained when the expression for the settling
rate - equation (9), is valid long enough for the particle to

descend to a height H ≈ L2 + 1/
√
β, whence the second

set of adhesive bonds start to bind. The time T ∗ is then
given by (Supplementary Material - II)

T ∗ ∼ q α β | ln L2 + 1/
√
2β

H∗
0

|. (10)

Our analysis has led to a simple picture for the kinetics
of adhesion as limited by the dynamics of fluid drainage
between the particle and the substrate. Our simple model
for adhesive capture relates microscopic features such as
kinetics and elasticity of individual adhesive bonds to
macroscopically measured settling rates and aging times.
We observe punctuated motion of the particle towards
the substrate, which is an outcome of rare binding events.
Such a punctuated aging process has been recently ob-
served and been hypothesized to reflect a small number
of meta-stable minima accessible to the system during
attachment [3] in agreement with our interpretation. Al-
though the punctuated aging process investigated here is
due to families of binders with distinct rest lengths, sim-
ilar effects would follow if the tethers were nonlinearly
elastic. Additional effects due to steric hindrance and
hydrodynamic or electrostatics effects on tether motions
may also alter the dynamics [12, 13], but we expect the
gross features of the process to be preserved nonetheless.

We conclude with a brief discussion of the elastic re-
sponse of the adhesively bound particle that stores of
elastic energy in the bonds which are compressed at the
point of closest approach and extended away from it.
This non-uniformity should lead to a non-trivial trans-
verse linear compliance of the adhered particle when
the sphere is subject to small amplitude, high frequency
transverse displacements (Supplementary Material - III).
As the particle ages, it is unstable to small transverse dis-
placements, whence the effective linear elastic compliance
of the system, Keff ∼ 2π

∑

i

∫ a

0 Ks ni(r, t)(
h−ℓi
h ) r dr, is

seen to change sign and become negative as the sphere
gets closer to the substrate. The physical mechanism
underlying this linear instability is that attached binders
near the centerline are compressed while those attached
far away are extended, so that the particle can move
sideways and eventually has a soft mode associated with
movement in a circle around the erstwhile energetic min-
imum due to a competition between tether shear and
compression. Incorporation of higher order terms and
allowing bonds to attach at an angle to the vertical reg-
ularizes this behavior. A careful experimental test of our
theory is an obvious next step.
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