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It has been demonstrated recently that supercooled liquids sharing simple structural features
(e.g. pair distribution functions) may exhibit strikingly distinct dynamical behavior. Here we show
that a more subtle structural feature correlates with relaxation times in three simulated systems
that have nearly identical radial distribution functions but starkly different dynamical behavior. In
particular, for the first time we determine the thermodynamic “point-to-set” length scale in several
canonical model systems and demonstrate the quantitative connection between this length scale and
the growth of relaxation times. Our results provide clues necessary for distinguishing competing

theories of the glass transition.
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The search for growing length scales accompanying the
glass transition has been a major focus of the field for two
decades [1]. Great progress has been made in quantify-
ing the behavior of dynamical length scales associated
with emergent dynamical heterogeneity, such as &4, the
length scale of the 4-point susceptibility [2]. Less mature
is our understanding of possible thermodynamic length
scales that grow upon supercooling. In some theories
of the glass transition, such as the random first-order
theory (RFOT), dynamical arrest is connected to a par-
ticular thermodynamically-based length scale associated
with the depletion of independent particle configurations
constrained by neighboring particles [3, 4]. Within this
viewpoint the putative structural length scale is distinct
from &, for modest supercooling [5]. In other approaches
this length scale may be identical to that associated with
dynamical heterogeneity at all temperatures [6, 7]. Fur-
thermore, in these contrasting viewpoints the relation-
ship of the various growing length scales with growing
relaxation times are different. Clearly, elevating our level
of knowledge of growing thermodynamic length scales as-
sociated with glass formation to that of dynamical ones
is of paramount importance in the continued quest for
a deeper understanding of the behavior of supercooled
liquids and glasses.

A precise definition of one type of non-trivial struc-
tural length scale akin to that envisioned in theories like
RFOT was put forward by Bouchaud and Biroli in 2004
[8]. Their work suggests a procedure for the extraction of
this length scale in computer simulations. This length is
a measure of the distance scale over which particles are
self-consistently pinned by other particles in their vicin-
ity. The static correlations embodied by this length scale
are known as “point-to-set” (PTS) correlations. In what

follows, we will use £prg to denote the PTS length scale.
There has been a recent flurry of activity in the extrac-
tion of variants of {prg in a host of model glass forming
systems [7, 9-14]. In this work we use this technique to
address the crucial question of correlation between {prg
and dynamics in systems with identical simple structural
features (e.g. radial distribution functions, g(r)) but no-
ticeably distinct relaxation time scales.

We consider three closely related systems, chosen
specifically to address this problem. The first two are
the standard Kob-Andersen binary Lennard-Jones mix-
ture (LJ) [15] and its WCA truncation (WCA) [16], which
were previously found to have significantly different dy-
namical behavior at supercooled temperatures [17], de-
spite having nearly identical two-body static correlations
at all temperatures (e.g. measured by ¢(r)). The third is
a system characterized by a repulsive inverse power law
potential (IPL) and was constructed based on the compo-
sition and parameters of the LJ system to reproduce both
two-body structural features and the dynamics of the LJ
model [18]. The similarities in pair correlations are illus-
trated in Fig. 1(a), and the structural relaxation times
for the temperatures in this study are shown in Fig. 1(b).
While it should be noted that minor differences exist in
g(r) between the three systems [18] (see supplemental
information (SI)), they are far too small to account for
the significantly weaker temperature dependence of re-
laxation times in the WCA system. In particular, neither
mode-coupling theory nor activation-based theories that
rely solely on the radial distribution function can account
for this distinction [19]. These three systems will allow
us to study whether £pryg is sensitive to structural dif-
ferences in the three models not appearing at the level of
g(r), and if so whether {prg can distinguish the LJ and
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FIG. 1. (a) The radial distribution functions for A-type par-
ticles at T' = 0.6 for the three models studied as an illustra-
tion of the structural similarity between the models. Other
temperatures and pairs are shown in the supplemental infor-
mation (SI). (b) The self-intermediate scattering functions
for A-type particles at k = 7.25 for NVE molecular dynamics
simulations of the bulk systems. The alpha relaxation, 7a,
is defined as the 1/e time of Fi(k,t), illustrated by the hor-
izontal dashed line. Curves shown for all models are, from
L-R, T = {2.0,1.0,0.8,0.6,0.55} and additionally for WCA
T = {0.5,0.45,0.4}. Note the LJ and IPL match at all tem-
peratures while the WCA matches only at T=2.0 and decays
significantly faster at lower temperatures. These temperature
represent the regime computationally accessible to our cavity
simulations. Parameters for the models can be found in the
SIL.

IPL from the WCA.

To measure £prg, we follow the protocol of Ref. 10. All
simulations were performed by the Monte Carlo (MC)
technique of Ref. 20. Bulk equilibrium configurations
are generated at a desired temperature, and then cavi-
ties are constructed by freezing the particles outside a
sphere of radius R. The center of the cavity is par-
titioned into N cubes of side length [. The overlap is
then defined as (R, t) = (IN)~"2 SN (n;(to)ni(to + t))
where brackets denote both a thermodynamic average
and an average over independent cavities, and n;(t) is a
binary digit specifying whether a particle is in box ¢ at
“time” t (time here standing for any measure of simula-
tion progress). As the cavity evolves in simulation, this
quantity decays to a plateau which is independent of time
and denoted ¢(R) = lim; o ¢(R,t). Overlaps generated
in this fashion will be referred to as “standard overlaps”.
With the preceding definition, two independent config-
urations will have an overlap ¢ = pl® which is also the
value of ¢(R — 00). We will henceforth subtract off this
bulk overlap from ¢, and denote the resulting value q.
Further details can be found in the SI.

A major complication of the algorithm sketched above

is that the plateau value ¢(R) will over-estimate the true
thermodynamic value of the overlap if the particle con-
figuration inside the cavity breaks ergodicity or if the
confinement simply induces relaxation on a time scale
beyond that accessible to our simulations. We note that
for all three systems studied here, relaxation times in-
crease dramatically as cavity radius is decreased. The
technique of particle swapping [20] ameliorates this prob-
lem in some systems, but is not effective in the systems
studied here, as swap moves that exchange particles of
different species are almost never accepted at supercooled
temperatures. To test for convergence to the true (ther-
modynamic) value of §(R), Cavagna and coworkers have
proposed a technique based on the insertion of a random
configuration of the same particles in the same cavity
[21]. Initially such a configuration will have, on average,
zero overlap (¢ = 0) with the pre-randomized configura-
tion, but the structure of the boundary will induce finite
overlap at long times. If this value measured with respect
to the initial configuration yields the same value of G(R)
as that extracted from the direct decay of (R, t), one can
be confident that the true thermodynamic value of the
overlap has been obtained [21]. This quantity is difficult
to converge in our system, hence we have implemented an
approach which we call “particle size annealing” (PSA).
In this method the particles inside the cavity are instan-
taneously reduced in size such that their positions quickly
randomize, and are then evolved with the constraint of
the cavity in place while their diameters are slowly tuned
back to their original size. We have found this method,
which is similar in spirit to algorithms used to gener-
ate randomly jammed packings of hard spheres [22], is
more efficient and reliable in the generation of converged
overlap values than standard Monte Carlo. In what fol-
lows, we use PSA both as a check of the convergence
of G(R) to its thermodynamic value and as a means of
generating estimates of ¢(R) for small R values. Specif-
ically, for radii where standard and PSA overlap values
match within error bars, the standard overlap is taken as
the thermodynamic overlap. For smaller radii, the value
from PSA yields a lower bound to the converged ther-
modynamic value of §(R). Further, we expect PSA to
yield estimates of G(R) that are extremely close to the
desired thermodynamic values. This expectation arises
from a comparison with other sampling techniques (e.g.
replica exchange) and direct Monte Carlo sampling. A
discussion of these comparisons will be made in a future
publication. Details of our approach may be found in the
SI. Example results for a single cavity size can be seen in
Fig. 2(a).

We now turn to a discussion of the extraction of {prg
from the spatial decay of the converged overlap function
G(R). Overlaps were fit to a generalized compressed ex-

ponential of the form §(R) = A exp(— ( R—a )n) Though

EpTs
a previous study used a pure compressed exponential (i.e.
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FIG. 2. (a) Overlap as a function of MC sweeps is shown
for cavity size R = 3.1 at two different temperatures. Filled
symbols show the overlap from MC dynamics and solid lines
show stretched exponential fits to this data. Open symbols
show the overlap from PSA and dashed lines show horizontal
fits to the long time plateau. Note that the overlap from PSA
and MC dynamics do not meet at the lower temperature. In
PSA, the particles have reduced diameters and may sample
many more configurations than when they are full-sized, thus
the PSA data goes below the bulk value at short times. Error
bars are from a bootstrap analysis and for the higher temper-
ature are substantially smaller than the symbols shown. (b),
(c) Overlap as a function of cavity size at two different tem-
peratures. Here, closed symbols show standard overlaps, open
symbols overlaps from PSA. Lines through the data are com-
pressed exponential fits with the form discussed in the text.
The LJ system is represented by solid lines, the WCA dashed,
and the IPL dash-dotted. The insets show the same LJ data
from the main figure with the same axis limits. Overlaid are
data from the WCA system at which the length is most sim-
ilar — T = 0.6 in (b) and T'= 0.4 in (c). Bootstrap errors
are, at largest, the size of the symbols shown.

a = 0)[10], we choose a = 1, physically motivated by the
fact that cavities with R ~ 1 should on average contain a
single particle and that the overlap properties at this cav-
ity size should not be sensitive to growing amorphous or-
der. Furthermore we do not expect the same compressed
exponential form to extend to cavities containing on av-
erage fewer than one particle. Fixing an a > 0 allows
us to perform a two-parameter fit with fixed A, leading
to values of {prg with much smaller statistical variance.
We find that for a = 1, A = 0.5 gives good fits to the

data for all three systems at all temperatures studied;
some example fits can be seen in Fig. 2(b). An extended
discussion of our fitting choices and methodology can be
found in the SI, as well as a table of fit parameters ex-
tracted from the data.

Fig. 3(a) illustrates our first main result, namely the
growth of the absolute thermodynamic length scale {prg
for all three systems discussed above. Several notable fea-
tures deserve mention. First, it is clear that the length
scale {prg grows unambiguously as temperature is low-
ered. This is fully consistent with other recent studies
that demonstrate growth of £prg in a variety of pinning
geometries [7, 9-14]. Second, the distinction between the
magnitude of £prg in the WCA system compared to the
LJ and IPL systems at the same absolute temperature is
stark. Despite the fact that the pair distribution func-
tions of all three systems are nearly identical, the more
subtle structural marker £prg can clearly distinguish the
WCA system from the other two. The lengths of the IPL
and LJ are found to be nearly identical at all tempera-
tures and much larger than those found for the WCA.

We now address the crucial question of correlation with
relaxation times in a quantitative manner. Is éprg cor-
related in a one-to-one manner with the alpha relaxation
time 7, extracted from the self-intermediate scattering
functions of the systems under investigation? A key com-
ponent of the answer to this question may be found in
Fig. 3(b). While the absolute magnitude of {prg in the
WCA system is clearly smaller than that of the other
two systems at the same temperature, the lengths of all
three systems collapse when temperature is scaled to the
value where £prg =~ 1.4. These temperatures are quite
similar to values obtained for “onset“ temperatures ob-
tained by independent means in earlier work [17]. In
Fig. 3(c) we show the behavior of relaxation times 7,
(obtained from NVE molecular dynamics of bulk equi-
librium systems) as a function of £prg in all three sys-
tems. Reasonable data collapse is found, signifying a
strong correlation between these quantities in all three
systems. Fig. 3(d) shows scaling plot where the indepen-
dent variable takes an activated form In(7,) ~ &prs/T,
normalized by the values of the lengths and temperatures
found from Fig. 3(b). The degree of collapse is similar
to that shown in Fig. 3(c) with no adjustable param-
eters, making it difficult to distinguish between scaling
forms where the temperature dependence of the growth
of 7, may be attributed purely to the growth of {prg
alone or the activated form commonly found in the lit-
erature [1, 3, 4]. Furthermore, both Figs. 3(c) and 3(d)
show slight but systematic deviations from perfect data
collapse, suggesting that similar but distinct exponents
associated with the scaling variable ((prg or Eprg/T)
would be required to extend these scaling plots to larger
To values; this may be similar to what is seen in Ref. 23
[24]. Regardless, the correlation between prs and re-
laxation time growth is striking. Finally, we note that
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FIG. 3. (a) Length vs. inverse temperature. For clarity,
& here represents {prs of the text. A clear distinction of
scale between the WCA system and the other two systems
should be noted. (b) The same data as in (a) but scaled to
a temperature where all three models have the same length,
To = 0.8 for the LJ and IPL and 7y = 0.6 for the WCA.
Here the length & is ~ 1.4. (c¢) Structural relaxation time
To vs. length £ The length scale correlates directly with
the relaxation time scale. (d) Structural relaxation time vs.
reduced length over reduced temperature. Ty and & are the
values giving collapse in (b). Error bars from our bootstrap
analysis are approximately the size of the data symbols. All
data are reported in the SI.

within the resolution of our current data, when relax-
ation times of these three models are similar, it is not
only £prs as defined here that matches, but rather the
full overlap profile ¢(R); this is illustrated in the insets
of Fig. 2. Hence, though our definition of {prgs is not
unique, we expect any reasonable definition to give the
same qualitative results as seen in Fig. 3.

The results presented here provide useful clues to the
underlying causes of the viscous slowdown of dynam-
ics during the supercooling process. &prg is the cen-
tral structural feature associated with slow dynamics in
RFOT-like theories [1, 3, 4]. In this sense, the results
presented in Fig. 3 would seem to be in harmony with
that viewpoint. It should be noted, however, that within
the standard RFOT, the lengths in the relatively high
temperature regime are not expected to necessarily cor-
relate strongly with relaxation times, as they do here.
Our results bear a resemblance to some features found
in some short-ranged p-spin models, which serve as a
possible paradigm for how the mean-field models that
RFOT is based on are altered by fluctuations. In partic-
ular, a weakly growing static length scale that is linearly
correlated with T'In(7) all the way up through the high
temperature regime as in Fig. 3(d) are features found in
the model of Ref. 25. Unfortunately, the static correla-

tions in this model are spin-glass correlations, which are
absent in real liquids. In general, studies such as those
carried out here should shed light on how fluctuations
modify (or destroy) the mean field behavior upon which
the standard version of RFOT is based [26, 27].

The mere existence of a growing £prg is not in contra-
diction with a picture based on kinetically constrained
models; however there are several aspects of our re-
sults which seem difficult to reconcile with the facilitated
picture. To address this, one has to examine results
from thermodynamically interacting models which can
be mapped onto kinetically constrained models. It has
already been noted that local dynamics inside compact
cavities show markedly increasing relaxation times as the
cavity radius is decreased [11]. While the same behav-
ior holds in the three systems studied here (not shown),
the opposite is true for large cavities in the triangular
plaquette model, the one model known to be dual to a
kinetically constrained model with hierarchical behavior
[7]. In addition, the absolute length scales found here are
quite small. Since {prg might loosely be interpreted as
the mean distance between defects in a facilitated model,
this fact would seemingly translate into an unrealistically
high density of defects with a rather weak temperature
dependence. Indeed, the magnitude of {prg found in
this work seems more consistent with the spatial extent
of the “defects” found in a recent study than the separa-
tion between these regions [28]. Lastly, our results seem
consistent with the idea that £prg and &4 are distinct in
the regime of weak to moderate supercooling [9], which
would be unexpected in models such as the triangular
plaquette model [5, 7] [29]. It is important to bear in
mind that plaquette models provide merely a small set
of all possible mappings of an interacting system to one
of kinetically constrained but thermodynamically non-
interacting defects. It is unlikely, however, that any such
mapping would have much to say about the small length
scales found in this work, which are expected to be simi-
lar to the coarse graining length scale in any mapping to
a kinetically constrained model [30].

In conclusion, {prg in three model glass forming sys-
tems has been been extracted. Care has been exercised to
avoid dynamical contamination of the overlap function.
We find that {prg is small and grows systematically al-
beit modestly as temperature is lowered. The spatial
range of the thermodynamic overlap functions and ex-
tracted £prs are clear discriminators of dynamical be-
havior, even when simple structural features such as pair
distribution functions are blind to differences in relax-
ation times. We find that in the cases studied here, {prg
correlates reasonably well in absolute terms with the re-
laxation times in all three systems. Future work will be
devoted to assessing if these correlations robustly hold
over a wider range of temperatures and systems, as well
as connecting the results uncovered here to other recent
work on non-trivial structural and thermodynamic mark-



ers of glassy behavior [9, 12, 23].
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