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We study the expansion dynamics of a one dimensional polarized Fermi gas after its sudden release
from confinement using both the mean-field Bogoliubov-de Gennes and the numerically unbiased
Time-Evolving Block Decimation methods. Our results show that experimentally observable spin
density modulations, directly related to the presence of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state, develop during the expansion of the cloud. Our work, therefore, provides a robust theoretical
proposal for the detection of this long-sought state.
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Since soon after the introduction of the Bardeen-
Cooper-Schrieffer (BCS) theory, physicists have specu-
lated on the fate of the superconducting pairing corre-
lations in the presence of an externally imposed or in-
duced polarization. This could arise from a mass imbal-
ance of the pairing fermions such as in color supercon-
ductivity or in the vicinity of magnetic impurities within
conventional superconductors. The FFLO (Fulde-Ferrell-
Larkin-Ovchinnikov) [1–3] proposal posits that in such
circumstances condensation of pairs with finite center-of-
mass momenta will take place. Despite decades of work
[4–6], this state has not been unambiguously observed.
Although recent experiments [7] in one dimension (1D)
confirmed important aspects of the phase diagram [8, 9],
conclusive evidence of the FFLO phase was not obtained.
We show here that during a non-equilibrium expansion,
the polarized 1D superfluid develops strong signatures
in the density profiles of the paring species which are
a direct consequence of the FFLO crystalline order and
constitute incontrovertible evidence.

We focus on a polarized degenerate Fermi gas confined
to a 1D harmonic trap, where there is copious theoretical
evidence that FFLO correlations occur and are fairly ro-
bust [10–17]. We also note that the experiments use not
a single 1D trap but a loosely coupled array which al-
lows tuning of the inter-tube coupling and thus makes it
possible to study the 3D to 1D crossover physics [7]. Al-
though a partially polarized phase was observed through
direct imaging in the experiment, it is quite clear from
recent work that the FFLO correlations do not leave a
strong detectable signature on the ground state density
profiles. Thus the character of the partially polarized
phase remains unknown.

We consider a gas of N fermionic particles each of mass
m with two spin projections labeled by σ = (↑, ↓) con-
fined to a cigar-shaped harmonic trap. In accordance
with the experimental situations [7, 18–22], we assume
that the inter-particle interaction arises from a broad
Feshbach resonance and is thus highly controllable. In
these systems, the ratio of the radial ωr and axial ωz

trapping frequencies which defines the anisotropy of the

trap, λ = ωr/ωz, can be made so large that the Fermi
energy EF associated with the axial dynamics of the trap
N~ωz and the temperature kBT , are both much smaller
than the energy level spacing of the radial confinement
~ωr i.e., N~ωz, kBT << ~ωr [7]. Due to the extremely
rarefied nature of the gas, the atomic physics at play and
the one-dimensional nature of the confinement, there are
virtually no spin relaxation processes and the particles
interact via s-wave scattering g1Dδ(z). Furthermore, in
addition to the total number N , the total polarization of
the cloud P = (N↑ −N↓)/(N↑ + N↓) can also be varied
through independent control of the number of particles
in each spin projection Nσ. Formally, this system is de-
scribed by the Hamiltonian Ĥ =

´

dz (H0 +HI) with:

H0(z) =
∑

σ

ψ†
σ

[

− ~
2

2m

∂2

∂z2
+ Vtrap (z)− µσ

]

ψσ

HI(z) = g1Dψ
†
↑(z)ψ

†
↓(z)ψ↓(z)ψ↑(z) (1)

where ψσ(z) and µσ are fermionic field operators and the
chemical potential, respectively, of atomic species with
spin σ, and Vtrap(z) = m

2 ω
2
zz

2. We define the Fermi
energy, radius, momentum and temperature as EF = N ,
zF =

√
2EF, kF =

√
2EF and TF = EF . We measure the

relative strength of the interaction with the ratio (γ) of
the interaction (ǫI) and the kinetic (ǫk) energy densities.
In the limit of weak interaction ǫI ∼ g1Dρ(z) and ǫk ∼
ρ2(z) yielding:

γ = g1D/ρ (2)

Our calculations are done using two methods with dis-
tinct but complementary advantages. First is the Time
Evolving Block Decimation (TEBD) [23] (See Supple-
mental Material for details of methods), an unbiased ap-
proach that retains all important correlations. Second is
the mean-field Bogoliubov-de Gennes (BdG) method, an
effective-theory approach which describes the spin densi-
ties ρσ(z) and the superfluid gap ∆(z) through quasi-
particle wavefunctions. The BdG has the advantage
that, when correct, it provides a clear picture of the
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Figure 1: (color online) The expansion of a sample with N = 40, P = 0.05 and g1D = −8.0. From left to right, each column
represents snapshots of the expansion dynamics at t=0.0, 1.0, 1.7 (1/ωz). Row 1 displays the density profiles. In each plot,
we show ρ↑, ρ↓ and S = ρ↑ − ρ↓ as obtained from a BdG calculation. Row 2 is the same as Row 1 except that the results
are obtained from a TEBD calculation. Row 3 shows the spin densities S(z) from the TEBD. Finally, in Row 4 we plot the
amplitude of the superfluid gap |∆| from the BdG calculation.

dynamics of the pairing field ∆(z) = g1D〈ψ↑(z)ψ↓(z)〉
in direct association with the particle densities ρσ(z) =
〈ψ†

σ (z)ψσ (z)〉. However, although the BdG has been
observed to give a very good description of 1D samples
at weak interaction [10], we do not expect this trend to
extend from moderate to strong interactions. Comple-
mentarily, the TEBD method provides a stringent check
for the phenomena observed in the BdG approach. In
both cases we work at T = 0 [24] and employ a canonical
approach which fixes N and P .

To observe the FFLO state, experiments must ver-
ify crystalline order in ∆(z) or, alternatively, that the
average center-of-mass momentum of the pairs 〈nk〉 is
proportional to the separation of the Fermi surfaces
〈nk〉 ∝ k↑ − k↓. In 1D this relationship can be recast
in terms of the spin density S(z) = ρ↑(z) − ρ↓(z) as
〈nk〉 ∝ π

´

L
S(z)dz/L, where L is the size of the par-

tially polarized region. Recently, a number of authors
[11, 12, 25] have suggested the measurement of 〈nk〉 —
obtained from density profiles of the time-of-flight images
of the expanded cloud assuming the expansion is ballistic
— as the most promising avenue for detecting the finite
center-of-mass momentum q of the pairs. These sugges-
tions are extrapolations from equilibrium studies where
〈nk〉 shows peaks at k = ±q in contrast to the peak at
k = 0 expected for regular BCS pairing. However, we are
not aware of analyses of the evolution of nk accounting
for the interacting nature of the expansion dynamics and
in particular how well this signal will be preserved. This
is particularly important for 1D given that γ increases
during expansion [see Eq. (2)]. In this study we explore

the possibility of finding a signal directly in real space.
Our calculations reveal that: (1) Upon axial expansion,
strong peaks develop in the spin density profiles. (2) The
position of these peaks exactly coincide with the nodes
in the pair correlation function and represent prima facie

evidence of FFLO correlations. (3) The strength of this
signal increases with γ and decreases with polarization,
being strongest when the spin excitations are gapped. (4)
The peaks in the spin density move much more slowly
than the edge of the cloud.

In Fig. 1 dramatic modulation in the spin densities are
observed as the cloud expands. Through a comparison
of the density plots with the corresponding gap param-
eter |∆(z)| (bottom row in Fig. 1) one can make a key
observation: The position and growth of the spin density

peaks respectively coincide with the nodes and amplifica-

tion of |∆(z)|. Furthermore, these spin density peaks
(or the order parameter nodes) move much slower dur-
ing the expansion as compared to the edge of the whole
cloud. We note that this is not a manifestation of the
spin-charge separation as here the spin refers not to an
excitation in the spin sector, but rather excess majority
atoms. In fact, previous studies have indicated that, in a
spin-imbalanced system, the spin and charge excitations
are coupled [26].

To understand this phenomenon, it is helpful to first
layout some broad features of the ground state utilizing
the phase diagram for a homogeneous system together
with the local density approximation (LDA) [8, 9, 14].
Under LDA, the trapped system can be regarded as lo-
cally homogeneous with a spatially varying chemical po-
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Figure 2: Density profiles, obtained from a TEBD calculation
during the expansion of a sample with N = 40, P = 0.15 and
g1D = −8.0.

tential defined by: µ(z) = µσ − Vtrap(z). There are two
regimes to be considered [7, 10, 11, 13, 14] depending
on whether P is smaller or larger than a critical polar-
ization Pc. For P < Pc, we obtain an FFLO state at
the center of the trap surrounded by fully paired BCS
wings at the edges. Here the BdG calculation tells us
that there is exactly one excess spin bound to each of
the nodes of the order parameter and the FFLO state
is analogous to a band insulator of the relative motion

between the unpaired and paired particles. The ground
state represented in Fig. 1 is within this regime and spin
density peaks represent the localization of unpaired spins
at the nodes of ∆. During the time of flight, the excess
spins are kept pinned to the nodes of the order param-
eter and become more tightly bound. The dramatic ef-
fects observed occur when this localization couples with
the average enhancement of |∆| implied by an increasing
γ as the density drops during expansion [see Eq. (2)]; a
uniquely 1D phenomenon. Henceforth we refer to these
spin peaks as node signatures.

For P > Pc, the FFLO state still remains at the cen-
ter in the ground state, but the wings exclusively contain
the majority spin component. In this regime, there are
more excess spins than nodes of ∆, and consequently they
are less tightly bound. Here we expect the node signa-
tures to be less dramatic which is confirmed in Fig. 2. In
particular, the spin peaks near the edges are not well re-
solved. We can therefore conclude that the best place to
observe the node signature is at P < Pc, where the signal
is enhanced by both a large separation of the nodes and
greater contrast with the background density. We note
that the value of Pc increases with |g1D| implying a siz-
able observation window for the strong interactions with
which experiments are conducted.

In equilibrium, the FFLO correlation appears as peaks
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Figure 3: Pair-momentum distribution at two different polar-
izations for g1D = −8 and N = 40. In each panel, we display
nk for different times. Counting from the left, the curves cor-
respond to t = 0, 0.47, 0.94 and 1.41, from top to bottom.
In both cases the momentum peaks representing the FFLO
state disappear from the plot during the expansion.

in the pair-momentum distribution nk defined by:

nk =
1

L

ˆ ˆ

dzdz′ eik(z−z′)O(z, z′) , (3)

where O(z, z′) ≡ 〈ψ†
↑(z)ψ

†
↓(z)ψ↓(z

′)ψ↑(z
′)〉 is the two-

point correlation function. In Fig. 3, we observe the ef-
fects of interaction on this signature during the expan-
sion. At sufficiently long time, nk no longer possesses
peaks at finite momentum.

One may wonder whether the node signatures can be
observed in in situ density profiles of a trapped cloud
with sufficiently large interaction strength. To answer
this, we show in Fig. 4 the density profiles of a trapped
system for g1D = −8, −20 and −36. (Note that for the
experiment reported in Ref. [7], g1D ∼ −50 for the cen-
tral tube.) One can see that the modulation depth of
the spin density of a trapped cloud is not very sensitive
to g1D. This is in sharp contrast to the BdG calculation
where the spin density modulation is indeed enhanced
as γ is increased — an indication of the invalidity of the
mean-field theory for strong interaction. In the exact cal-
culation, the localization of excess spin at large |g1D| is
counter-balanced by increased quantum fluctuations ne-
glected in the mean-field theory. Therefore, the dramatic
emergence of node signatures is a unique feature of the
expansion dynamics.

Finally, we address the question of the effect of the
interaction strength in Fig. 5, where the spin densities
in an expanding cloud are shown for two sets of inter-
action strength. Though the results for strong and weak
interactions are qualitatively similar, the spin peaks start
to develop earlier for the case of smaller g1D. This could
play an important role in practice when the finite lifetime
of the system must be taken into account.

In conclusion, we have investigated the expansion dy-
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P = 0.05 and for different interaction strengths g1D. In each
plot, we show ρ↑, ρ↓ and S obtained from a TEBD calculation.
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Figure 5: Expansion profiles for two different samples with
N = 40, P = 0.05 but at different interaction strengths g1D.
In each plot, we plot the TEBD result for S. In both cases,
the modulation depth of the spin density first reduces and
then strengthens during the expansion.

namics of a polarized Fermi superfluid in 1D using both
the BdG and TEBD methods. Our results predict that
strong spin density modulations, which can be readily
observed in experiment, emerge during the expansion
and provide direct evidence of the FFLO state. Exper-
imentally, an array of 1D tubes are created [7] and the
measurement averages over different tubes. One obvi-
ous concern is that such an average may smear out the
spin modulation. Although a full investigation of the dy-
namics of coupled tubes lies outside of the scope of the
current work, we comment that this problem can be mit-
igated by allowing small inter-tube tunneling such that
a quasi-1D situation results. Previous BdG studies in
both a 3D cigar-shaped trap [27] and such coupled 1D
tubes [28] have shown that the nodes of the order pa-
rameter (and hence the spin peaks) tend to align along
the radial direction. Thus the node signature would not
be smeared out by averaging. We are currently work-

ing on a 3D time-dependent BdG code which can be
used to study the expansion dynamics of coupled tubes
in the future. Apart from the pair-momentum distribu-
tion function described above, other methods [29] have
been proposed in the literature to detect FFLO. However,
they all rely on interferometric techniques requiring two
fermionic superfluids, one of them being the FFLO state.
Our proposal, in contrast, only requires the FFLO cloud
itself and hence is significantly simpler. In a more gen-
eral context, our work shows that the quantum dynamics
of low-dimensional atomic gases is highly non-trivial and
deserves more thorough studies in the future.
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