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Molecular dynamics simulations are used to investigate the diffusion properties of one-component
plasmas and binary ionic mixtures from the weakly to the strongly coupled regimes. A physically-
motivated model for the diffusivities is proposed that reproduces the simulation data, and gives
insight into the nature of ionic motions and interactions in plasmas across the coupling regimes.
The model extends the widely used Chapman-Spitzer theory from the weakly to the moderately
coupled regime. In the strongly coupled regime, diffusion is modeled in terms of thermally activated
jumps between equilibrium positions separated by an energy barrier. The basic ideas discussed are
applicable to the study of other transport coefficients.
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High-fidelity computational modeling of many high-
energy density laboratory experiments, and astrophysi-
cal systems, requires accurate knowledge about the mi-
croscopic transport properties of plasma mixtures over a
wide range of physical regimes. Of these properties, ionic
transport coefficients such as diffusivities and viscosities
play a critical role in various phenomena. For exam-
ple, they are central to the modeling of ICF imploding
capsules since they affect the instability driven mixing
of heavy elements shell that encloses the lighter fuel [1],
and influences the recently advanced plasma-physics ef-
fects [2]. In astrophysics, ionic transport is essential for
understanding the composition of giant planets, and for
modeling the sedimentation of heavy elements in white
dwarf stars and neutron stars’ crusts that can strongly
alter their light curves and nucleosynthesis [3]. All these
physical systems, albeit involving very different chemical
compositions, have in common a wide range of Coulomb
couplings concurrently traversed, from the weakly cou-
pled regime studied in traditional plasma physics to the
moderately and strongly coupled regimes where conven-
tional estimates based upon, e.g., the Chapman-Spitzer
(CS) theory [4–6], break down. In this Letter, we present
an approach to the interpretation and modeling of the
coefficients of ionic diffusion across the coupling regimes.
We calculate the diffusion coefficients with molecular dy-
namics (MD) simulations on simple, but physically rele-
vant plasma models over the entire range of coupling and
for a large variety of compositions [7]. We validate the CS
theory in the weakly-coupled regime and extract the ac-
tual value of its ad hoc cutoff parameters. We show how
the CS theory can be simply extended to the moderately
coupled regime with no additional parameter. When ions
are strongly coupled, the generalized CS theory breaks
down but can be smoothly replaced by a model based
upon the so-called “cage” effect.

Our MD simulations, based on a parallel implemen-
tation of the particle-particle particle-mesh algorithm
that simultaneously treats long and short range encoun-
ters. The calculations are done with enough particles

(5000 ≤ N ≤ 200000), over long enough time scales
(1638.4 ≤ tωp ≤ 6553.6), to ensure convergence with a
statistical uncertainty of at most ∼ 5% at the smallest
couplings (< 1% elsewhere). Transport coefficients are
calculated using Kubo formulas, e.g., the self-diffusion
coefficient is D = kBT

m

∫∞

0
Z(t), where Z(t) is the nor-

malized velocity autocorrelation function (VAF) of the
species considered [8]. The calculations are particularly
demanding at small couplings due to long collision mean-
free path, which explains why ab-initio validation of CS
has been impractical before now. Previous MD data were
collected at moderate and strong couplings and modeled
with brute force, giving unphysical fits that are invalid
outside the interpolation interval [3, 9–11]. Besides CS-
like theories [5, 6], Rosenfeld [12] developed a practical
model for strongly coupled BIM’s diffusivities in terms
of those for effective hard spheres (with ∼ 30% accu-
racy), but the model gives little insight into the underly-
ing physics. A promising kinetic theoretic approximation
to extend CS to higher coupling was described in [13].
We first consider the unmagnetized one-component

plasma (OCP) model [14], a system of identical ions
(mass m, charge q = Ze, density n, plasmon frequency
ωp =

√

4πq2/m) at temperature T interacting through
the Coulomb potential, and immersed in a uniform neu-
tralizing background. The OCP is characterised by the
coupling parameter Γ=q2/akBT , where a=(4πn/3)−1/3

is the Wigner-Seitz radius. As Γ increases, the OCP
changes from a nearly collisionless, gaseous regime for Γ<
<1 through an increasingly correlated, liquid-like regime
to the crystallization into a lattice at Γm=q2/akBTm ≈
175 [10]. Figure 1 shows our MD results for the self-
diffusion coefficient D with 0.075 ≤ Γ ≤ Γm along with
the model described below. Elementary theories of diffu-
sion assume binary collisions and lead to

D =
1

3
vthlmfp =

kBT

m

1

ν
, (1)

where vth is the thermal velocity, lmfp = vth/ν the mean
free-path and ν the collision frequency. For weakly cou-
pled plasmas, Γ<<1, the CS theory gives ν ≡ νCS =
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FIG. 1: (color online) Self-diffusion coefficient D∗ =D/a2ωp

of the OCP vs coupling Γ as obtained from MD (circles),
along with the numerical fits to the data using (2) and (4)
over Γ < 2. (blue line) and 50 ≤ Γ (red line), respectively.
The dashed line shows the Γ<< 1 (CS) limit of (2). Top
inset: same for the Yukawa OCP with κ = 0, 1, 2, 4 (from
bottom to top). Bottom left inset: generalized CS collision
frequency (2) (for κ= 0), and its Γ<<1 limit (dashes). The
dotted line shows the inadequacy of a commonly used ansatz
to cure CS and based on the Rutherford scattering formula,
ln Λ = 0.5 ln(1 + C2λ2

D/r2c ) [6]. Bottom right inset: ratio of
MD and model data shown in main frame.

ν0 ln ΛCS , where ν0 = 4
3

√

π
m

nq4

(kBT )3/2
and

lnΛCS = ln

(

C
λD

rL

)

= ln

(

C√
3Γ3/2

)

,

is the Coulomb logarithm. The latter arises because
of the long-range nature of the Coulomb force and is
usually expressed in terms of the Debye length λD =
√

4πq2n/kBT (which represents the largest impact pa-
rameter beyond which interactions are screened out), and
of the distance rL = q2/kBT (which characterizes the
smallest impact parameter). C is a correction to these
somewhat arbitrary cutoff parameters that is difficult to
calculate analytically but, as we shall see, can be ex-
tracted from microscopic simulations (C=1 is usually as-
sumed). CS is clearly inapplicable when Γ > (C/

√
3)2/3,

since it leads to negative diffusivities. We propose to ex-
tend the CS collision rate to higher coupling Γ as follows,

ν = αν0 ln Λ with lnΛ = ln

(

1 + C
λD

rL

)

. (2)

The factor α is a correction to the fact that νCS cor-
responds to a single Sonine polynomial approximation
in the Chapman-Enskog solution of the plasma kinetic
equation [4]. The generalized Coulomb logarithm lnΛ is
always positive and reduces to lnΛCS for Γ<<1. The
blue line in Fig.1 shows the result obtained with Eq.(2)
when the parameter α,C are fitted to the MD data over

the range Γ≤ 2, giving α = 0.647 and C = 2.159. The
model matches the data very well, and bridges the weakly
and moderately coupled regimes up to Γ ∼ 30, while
the fit was done for Γ ≤ 2. Our MD data validate the
CS theory at small coupling Γ ≤ 0.2 (dashed line in
Fig.1) and give access to the correction factors α and
C. In the regime 4 ≤ Γ ≤ 30, the collision frequency
saturates at ν ≈ 0.25ωp (see bottom inset of Fig.1).
Beyond Γ ≥ 30, our extended CS model breaks down.
As discussed in [10, 16], the dynamics enters a distinc-
tive, liquid-like regime where, pictorially, each particle
finds itself trapped for some time in the cage formed by
its immediate neighbors, and eventually escapes into a
neighboring site when a thermal fluctuation helps it pass
the energy barrier of the cage. By applying transition-
state theory [17], Eyring obtained D = δ2k, where δ is
the distance between successive cages and

k = p
kBT

h
e−∆F∗/kBT = p

kBT

h
e∆S∗/kBe−∆U∗/kBT , (3)

is the frequency of jumps from cage to cage. Here p ≤ 1 is
a transmission coefficient, ∆S∗ and ∆U∗ are the entropy
and energy of activation per ion (h is Planck’s constant).
In dimensionless units, the Eyring model reads [18]

D∗ =
D

a2ωp
=

A

Γ
e−BΓ =

A

Γ
e−γ Tm

T , (4)

in terms of two parameters A and B (or alternatively
γ = BΓm), where we assume that ∆S∗ and ∆U∗ are in-
dependent of T over the small liquid regime 50 ≤ Γ ≤
Γm. The red line in Fig.1 shows the result obtained us-
ing Eq.(4) when A,B are fitted to the MD data over the
range 50≤ Γ≤ Γm, yielding A = 1.52 and B = 0.0082.
The model (4) matches the data remarkably well down to
Γ ∼ 25 where it merges with our generalized CS model.
Interestingly, Γ ∼ 25 roughly corresponds to the value
at which the viscosity coefficient reaches a shallow mini-
mum, separating the dense gas to the liquid-like regimes.

Similar agreement is found when the Coulomb poten-
tial is replaced by the Yukawa potential e−κr/r, where
the inverse screening length κ mimics electronic screen-
ing [15]. This is illustrated in the inset of Fig.1 for
κa = 0, 1, 2 and 4; the fitting parameters are collected
in table I and will be commented elsewhere.

κa Γm α C A B = ∆U∗/(q2/a) γ

0. 175.0 0.647 2.159 1.52 0.00820 1.41

1. 217.4 0.374 3.265 1.73 0.00627 1.37

2. 440.1 0.236 3.551 2.32 0.00295 1.30

4 3837. 5.46 0.000316 1.21

TABLE I: (color online) Model parameters obtained by fitting
the MD data shown in Fig.1 (values of Γm at finite κ are taken
from [15]). Note the relation ∆U∗

∼ 1.2 − 1.4kBTm.
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FIG. 2: (color online) Dimensionless self-diffusion coefficients
Dj/a

2ωp for various BIMs along with our model (see fitting
parameters in table II). For clarity, plots are shifted vertically
[7].

We now show that our approach extends to mixtures.
We consider the binary ionic mixture (BIM) model, con-
sisting of two ionic species j = 1, 2 (charge qj = Zje,
mass mj , number density nj , concentration xj = nj/n,
n = n1+n2, mass fraction Xj) at temperature T im-
mersed in a uniform neutralizing background [19, 20].
We find it convenient to characterize the BIM coupling
strength by Γ= 〈Z5/3〉e2/akBT , where 〈.〉 is the num-
ber weighted average and a = (3/4πn)1/3. A thorough
study of BIMs is quite involved since BIMs depend on
four parameters, e.g. m1/m2, Z1/Z2, x1 and Γ, com-
pared with only one for the OCP. In the weak to moder-
ate coupling regime, we write the self-diffusion coefficient
of each species as Dj =

kBT
mj

1
νj

in terms of the collision

frequency νj = αjν0 ln Λj and the Coulomb logarithm

lnΛj = ln

(

1 + Cj
λD

rc

)

= ln

(

1 +
C′

j

Γ3/2

)

. (5)

with λD =
√

kBT/4πn〈q2〉 and rc =
q1q2
kBT . For the refer-

ence frequency ν0, we choose that used in the CS inter-
species collision frequency νCS = ν0 ln ΛCS, where

ν0 =
4

3
n
√
2π

√

µ

〈m〉
〈m〉2
m1m2

q21q
2
2

(kBT )3/2

and lnΛCS = ln (CλD/rc) (the Chapman calculation
C = 4). For the strongly coupled regime, we again refer
to the cage model and propose

D∗
j =

Dj

a2ωp
=

Aj

Γ
exp (−BjΓ) (6)

where ωp =
√

4π〈q〉2/〈m〉 is the plasmon frequency. Fig-
ure 2 shows a collection of results for D1 and D2 ob-
tained for fully ionized H/D, H/He, He/C and H/C-like
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FIG. 3: (color online) A: Comparison of VAFs in isotopic
BIMs with a heavy trace element (x2 = 0.005). B: Variation
with Γ of D2/D1 in isotopic BIMs. C: Comparison of VAFs
in isotopic mixtures with light impurities (x2 = 0.995). D:
VAFs in fully ionized H/Fe-like mixtures.

mixtures over a wide coupling range; the fitting parame-
ters and their variation with the BIM parameters will be
discussed elsewhere. The MD data show two distinctive
regimes at small and large coupling that can be accu-
rately reproduced by (5) and (6), respectively.
Our model for the self-diffusivities can be used to ac-

curately estimate the mutual diffusion coeffcient D12 =
JD12 involved in Fick’s law of diffusion [19], where J is
a thermodynamic factor (J =〈Z2〉/〈Z〉2 at Γ<<1 [13])

and D12 = 〈m〉
m1m2

kBT
ν12

where ν12 is the friction (in CS,
ν12 = ν0 ln(4λD/rc) [6]). Indeed, our MD data [7] con-
firm the previously established [12, 13, 19] empirical ex-
pression for D12 in a BIM in terms of the self-diffusion
coefficients D12 = x2D1 + x1D2 of the same BIM (or,
equivalently, 1/ν12 = X2/ν1 +X1/ν2). This mixing rule
could potentially be extended to multi-component mix-
tures.

x2
m2

m1
Γ = 0.5 Γ = 1 Γ = 50 Γ = 100 Γ = 150

2 5.54 1.87 0.0215 0.0067 0.00292

0.005 10 4.87 1.77 0.0210 0.0066 0.00288

100 4.73 1.78 0.0206 0.0065 0.00284

2 5.20 1.858 0.0190 0.00590 0.00295

0.111 10 3.98 1.459 0.0171 0.00537 0.00240

100 2.61 0.933 0.0105 0.00370 0.00158

TABLE II: Impurity self-diffusivities D2 in isotopic BIMs in
units of a2

1ωp,1 independent of m2 and x2 to facilitate the
comparisons.

The microscopic particle dynamics in BIMs is rich and
varied, and its relation to transport properties on hy-
drodynamic scales is subtle. The study of isotopic mix-
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ture, i.e., with q1 = q2 and m1 ≤m2, provide a nice il-
lustration of this. In isotopic mixtures, static particle
distributions, like the pair-distribution functions, are all
equal since they are mass independent. On the contra-
try, kinetic quantities like the momentum collisional ex-
changes are expected to depend on the mass ratio. We
first consider the case in which species 2 is a trace el-
ement, i.e. x2 << 1, and m2/m1 = 2, 10, 100 (see table
II). While the mass dependence of the diffusivities D2

alluded to above is apparent, other noticeable features
appear: with x2 = 0.005, (i) D2(100) ≈ D2(10) for all
Γ, i.e the self-diffusivity of a heavy impurity is nearly
mass independent, while (ii) D2(2)≈D2(10)≈D2(100)
at large Γ, i.e. the heavy impurity self-diffusivity is very
weakly dependent on its mass in the liquid regime. The
microscopic dynamics, however, does not seemingly cor-
relate with these findings, e.g., the VAFs are strongly
mass-dependent: in Fig.3A, Z2(t) oscillates and reaches
negative values (caging) when m2/m1=2, but monotoni-
cally decays with no sign of strong-coupling effects when
m2/m1 = 100 . Fact (i) can be understood using the
microscopic theory of Brownian motion [8]: for a heavy
impurity m2>>m1 in a fluid of light particles,

ν2 =
1

3kBTm2

∫ ∞

0

dt 〈f(t) · f(0)〉eq ,

where f(t) is the force acting on a fixed impurity due to
its interaction with the fluid light particles, 〈.〉eq is the
thermal average in the presence of the fixed impurity; the
latter are independent of m2 and so is D2 = kBT/m2ν2
for all T , as found in our MD calculations. Data in
table II for x2 = 0.111 show that the Brownian limit
quickly breaks down since D2(10) 6=D2(100). As x2 in-
creases, the light element self-diffusivity is also increas-
ingly affected by the other species. However, Fig.3B
shows that the effect is much stronger at small cou-
pling (e..g, when x2 = 0.43 at Γ = 0.5, D2(100)/D1 > 4,
while D2(2)/D1 ≈ 1.1), while in the liquid regime (iii)
D1 ≈ D2 for all mD, which is reminiscent of fact (ii)
above. However, a look at the microscopic dynamics
could suggest the contrary since, as illustrated in Fig.3C,
the light species VAFs oscillate and vanish on very dif-
ferent time scales depending on m2. A detailed Fourier
analysis (not shown) [7, 21] allows one to reconcile the
microscopic and hydrodynamic behaviors. Shortly, in
the liquid regime, a BIM supports collective, longitudi-
nal, high-frequency (plasmon) excitations of wavelengths
down to a few interparticle distances [22], and also sus-
tains the propagation of shear waves with wavelengths of
the order of the interpaticle separation. The former are
responsible for the long-lived oscillatory behaviour, but
barely contribute to the zero-frequency component of the
VAFs that gives the diffusivities (Kubo formula). On the
hydrodynamic scale, however, self-diffusivities are deter-
mined almost entirely by the transverse modes. The same
effect is at the origin of the Stokes-Einstein relation that

relates diffusion and viscosity coefficients in all simple
liquids and OCPs [10]. Of course, the diversity in BIM’s
dynamics is even richer when both mass and charge ra-
tios are varied. This is briefly illustrated in Fig.3D that
shows VAFs in asymmetric H/Fe-like mixture (relevant,
e.g., to neutron stars). Here, because of its high elec-
tric charge (Z2/Z1=26), Fe ions can be strongly coupled
among themselves (coupling is ∝ Z2

2 ) while H ions are
weakly coupled to other H ions (∝ Z2

1 ) and moderately
coupled to Fe ions (∝ Z1Z2). Thus, H diffuses like in a
weakly to moderately coupled plasma, while Fe diffusion
is limited by strong coupling effects.
In summary, the Chapman-Spitzer result has been val-

idated at small coupling and extended to moderate cou-
plings by changing ΛCS by 1 + ΛCS in the Coulomb
logarithm. Remarkably, a similar extension was vali-
dated for a quite different relaxation mechanism, the
temperature relaxation rates in electron-ion plasmas [24].
This strongly suggests that this extension of conven-
tional plasma theory might be applicable to other plasma
models (e.g. better screening model) and other trans-
port properties (e.g. viscosities, conductivities). Recent
progress in kinetic theory (e.g., [13, 24, 25]) may be use-
ful to analytically predict the values of the parameters
(such as α,C) without t1he need for demanding micro-
scopic simulations.
This research is supported by the Department of En-

ergy, under contract W-7405-ENG-36.
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