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Abstract: 

We develop a set of laser rate equations that accurately describes mechanical 

amplification in opto-mechanical oscillators driven by photo-thermal or radiation 

pressure forces. In the process we introduce a set of parameters describing gain, stored 

energy, slope efficiency and saturation power of the mechanical laser. We identify the 

three-phonon parametric interactions as a microscopic mechanism enabling self-

oscillation. Our theory shows remarkable agreement with our experimental data, 

demonstrating that opto-mechanical self-oscillation is essentially a “phonon lasing” 

process in which an optical pump generates coherent acoustic phonons.  
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Cavity opto-mechanics enables resonantly enhanced light to exert forces on small 

mechanical objects with high quality mechanical (acoustic) resonances [1-3].  If the 

mechanical object comprises the whole resonant cavity (as in micro-disks and toroids [4]) 

or a part of it (as in Fabry-Perot cavities [5]), then a feedback back-action mechanism is 

established that enables external optical control of both frequency and amplitude of the 

mechanical oscillations. The frequency and amplitude changes are usually achieved by 

tuning the optical wavelength around the resonance, and, from a practical point of view, 

the control of amplitude has been the focus of attention of many groups. Reducing the 

vibration amplitude of a mechanical mode can be thought of as reducing its effective 

temperature, thereby making it a highly-sensitive detector of various external forces.   

 While most research has concentrated on achieving opto-mechanical cooling [6-

8], it has also been demonstrated that by simply changing the sign of the detuning (i.e. 

tuning the wavelength either red- or blue-shifted compared to the cavity optical 

resonance) an opposite effect can be achieved.  The resulting large increase in the 

amplitude of mechanical oscillations with optical power is accompanied by the reduction 

of the linewidth of these oscillations. It has also been shown in various opto-mechanical 

schemes that beyond a certain threshold power self-sustained mechanical oscillations 

materialize [9,10] leading a number of researchers to demonstrate mechanical or phonon 

lasing [11,12]. However, explanations of above-threshold opto-mechanical oscillation as 

phonon lasing have not, until this work, described either the “gain” or “emission” in the 

context of energy balance. Lasing generally comprises an act of stimulated emission of 

coherent bosons occurring in the gain medium and is typically described by a set of two 

coupled rate (balance) equations: one for the gain (or population inversion) and the other 

for the bosons in the resonant mode [13-15].  Within this model the onset of lasing is 

always characterized by the twin telltale signs of rapid growth of oscillating power 

combined with the collapse of the linewidth.  While these signs have been observed 

before for opto-mechanical oscillators [5,7,9], they have not been explained in the 

framework of balance equations and no customary laser terms, such as gain, population 

inversion, saturation power and slope efficiency have been formulated for opto-

mechanical oscillators.  



 3

In this work we develop a set of mechanical laser rate equations with identifiable 

parameters describing gain, stored energy, slope efficiency, and saturation power.  Our 

theory shows remarkable agreement with our experimental data in terms of power and 

linewidth, demonstrating that opto-mechanical self-oscillation is essentially a “lasing” 

process in which an optical pump generates coherent acoustic phonons. We consider a 

silicon-on-insulator micro-opto-mechanical oscillator [16] consisting of a suspended 

silicon microbridge that is clamped at both ends (Fig. 1a).  The SiO2 layer has been 

etched from underneath the microbridge so that it is otherwise free to vibrate.  

Perpendicular to and intersecting the microbridge is a rib waveguide into which two sets 

of λ/4 air trenches have been etched.  Each set of air trenches forms a high-reflectivity 

(R>98 %) distributed Bragg reflector (DBR), which together form a Fabry-Perot 

microcavity.  One of the DBR’s is fixed while the second is etched into the center of the 

vibrating microbridge.  Any in-plane microbridge oscillation therefore modulates the 

position of the second DBR and modulates the Fabry-Perot microcavity transmittance. 

We perform all our measurements with the laser wavelength red-detuned with 

respect to the Fabry-Perot optical resonance.  In Fig. 1b we show several mechanical 

resonance spectra measured in vacuum (P~20 mTorr) using the experimental setup 

described in [16].  At low optical power (Pin=13 μW) the measured spectrum is just 

above the calculated thermal noise floor indicating a minimal opto-mechanical 

interaction.  As we increase the power (Pin=206 μW) the linewidth narrows and the 

amplitude increases linearly.  However, a further increase in optical power (Pin=412 μW) 

leads to a strong nonlinear increase in oscillation amplitude, indicating a threshold 

condition.  The accompanying frequency shift (Δω) is the result of radiation pressure [16] 

while the threshold condition is photothermal in nature as is explained below.  The 

simultaneous presence of photothermal and radiation pressure forces acting in opposite 

directions at vastly different time scales enables us to separate their effects in a 

straightforward manner [16] and we focus mainly on the photothermal force here as it 

relates to the threshold condition. 

 We now derive a set of two opto-mechanical laser rate equations. Since the 

"output power" of a mechanical laser is related to the vibration amplitude and the gain to 

the temperature rise it is the equations for these two variables that serve as a basis for our 
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derivations.  The position of the beam has both steady state and oscillating components, 
1

0 2 exp( ) . .mz z z j t c cω= + +  where zm is the slow-variable amplitude. A change in the 

optical cavity length causes a change in the optical power at the DBR etched into the 

microbridge. This power also has two components, 1
2 exp( ) . .mP P P j t c cωΔ = Δ + +  which 

causes the temperature to rise relative to the ambient temperature
1
2 exp( ) . .mT T T j t c cωΔ = Δ + +  The rise in the amplitude of temperature oscillations is 

determined from / ( 1 / ) /m t m t m tdT dt j T R Pω τ α τ= − + +  where α is the total absorption in 

the beam, tR is the thermal resistance and tτ is the thermal relaxation time. The 

relationship between mP and mz is determined by the derivative of the power inside the 

cavity with respect to the change in optical length (that is, the derivative of our cavity 

lineshape). To maximize the derivative, the laser wavelength must be shifted from the 

resonance by a small amount, which for a Fabry-Perot cavity with finesse F and Q-factor 

optQ can be found as ( )/ 2 3 optQλ λΔ ≈ .  This causes the second derivative to vanish and 

only the first and third order derivatives may be kept in a series expansion, with the 

values equal to ( ) ( )2' 1 1/2 1
1 3 / 3in Si cav inP z P F n T Pπ λ− −= ≈ ∓ and

( ) ( )4''' 3 1/2 3 3
3 8 3 / 3in cav Si inP z P F T n Pπ λ− − −= ≈ ±   respectively, where Tcav is the cavity 

transmission at resonance, nSi=3.48 is the effective refractive index of the Si waveguide,

 and inP is the waveguide optical power incident on the cavity. One obtains

( )2 2
1( / ) 1 /m in m m satP P z z z z= − , where we have introduced the saturation amplitude 

3
3 1/ / 3sat Siz z z n Fλ= − ≈ . Assuming that the heating is nearly adiabatic, i.e. 

1
0/ , td dt ω τ −<< , we obtain  
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 (1)   

for the real and imaginary (quadrature) components of temperature. Now, the equilibrium 

position of the beam, 0z , is modified as the beam expands due to the increase in 
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temperature and can be written as 1
0 0 2 exp( ) . .m

z
Tz z T j t c cω⎛ ⎞

⎜ ⎟
⎝ ⎠

∂
∂= + + , where z

T
⎛ ⎞
⎜ ⎟
⎝ ⎠

∂
∂

is a 

thermal-displacement gain coefficient that relates the beam displacement to changes in 

temperature via thermal expansion [16]. Inserting that into a damped mechanical 

oscillator equation 2 2 2
0 0/ / ( )d z dt dz dt z z tγ ω ⎡ ⎤+ = − −⎣ ⎦  yields for the slowly variable 

amplitude of oscillations 

 
' "

2 2 2 2
0 0 0

1
2 2 2

m m m
m m m

m m

dz T Tj dz dzz z z
dt dT z dT z

γ ω ω ω ω
ω ω
⎛ ⎞

= − − − − −⎜ ⎟
⎝ ⎠

. (2) 

The first term describes the damping, the term in parenthesis is the observed resonant 

frequency shift [16,17] that can be also thought of as a frequency pulling in a 

conventional laser theory ([13], Eq. 12.13), while the last term describes the gain. Note 

that only the quadrature component of Tm contributes to the gain, which is precisely the 

90-degree phase shift occurring in optical parametric oscillators [13] - an analogy 

explored below. Finally, we obtain for the square of the amplitude  

 [ ]
2 *

* 2 2 2 2
0

1 " ( )m m m
m m m m m m

m

dz dz dz dh Tz z z z g z z
dt dt dt dT z

γ ω γ
ω

= + = − − = − , (3) 

where we have introduced our gain (per unit of time) ( )2 "
0 / ( / ) / mg dz dT T zω ω= − .The 

rate equation for the gain is then obtained from (1) as   

 ( )2 20
' ' 1 /m sat
t t

gdg g z z
dt τ τ

+ = − , (4) 

where the unsaturated gain is ( ) 1 2 '
0 1( ) / ( )in t in tg P dz dT R P t zα ω τ−= ,and the modified 

thermal relaxation time is ' 2 2/ (1 )t t tτ τ ω τ= + . Equations (3) and (4) represent our main 

result: a coupled set of equations for gain and oscillating power in an opto-mechanical 

system.    

Equations (3) and (4) can be rewritten as a set of standard laser rate equations 

(Eq. 13.43 in [13]) and to better describe the energy balance. We introduce the energy of 

mechanical vibrations, 1 2 2
2m mU m zω= , its saturation value, 1 2 2

2sat satU m zω= , and another 

variable, the stored energy of phased-locked thermal phonons that are available for  
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"lasing" '
st t satU g Uτ= , whose un-saturated value is '

,0 0st t satU g Uτ= . We also include the 

thermal noise power / 2NP kTγ=  in the equation to obtain   

 

,0
' '

'

1stst m st

t sat t

m st
m N

t sat

UdU U U
dt U

dU U U P
dt U

τ τ

γ
τ

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

. (5) 

For the relatively weak vibrations zm<<zsat   the first of Eqs (5) can be approximated as  

 ' '
st st st m

p in
t t sat

dU U U UP
dt U

η
τ τ

= − − , (6) 

where we have introduced the pumping efficiency 
1/2

,0 '
' 2 3

st cav
p t eff Si t

in t

U T dzR K n
P dT

ωη α λ ωτ
τ π

= =   

and 2
0eff effK m ω= is the effective spring coefficient. The stimulated emission term 

'/st m sat tU U U τ appears in both equations for stored and released energies with opposite 

signs indicating perfect energy balance as the energy is transferred from thermal phonons 

in all acoustic modes into coherent phonons in a single resonant mechanical mode. Also, 

note that neither ,0stU nor pη depend on cavity finesse, which is consistent because they 

basically represent the area under the optical force curve.  

Next, we divide all the energies by a phonon energy ω= to obtain standard set of 

Statz-de-Mars [14, 15] balance equations 
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, (7) 

with nm being the number of coherent phonons, Nst playing the role of population 

inversion and ( ) 1'
t satNτ

−
 being the equivalent of stimulated emission coefficient.  One 

difference between the rate eqns. (7) and the standard laser equations is that the noise 

term is of thermal nature and thus appears to be classical.  However, this is simply the 

approximation of a fully quantum Bose-Einstein distribution term for the case of 

kT ω>> = and is not related to the fact that our quanta are phonons and not photons.   
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We introduce the threshold value of stored energy, '
,st th t satU Uγτ= , and the 

threshold pump power  

 
( )

2 2
'

, 2 1/2

10.62/
/

t Si
th st th p t

m cav t t

nP U
Q F T dz dT R

ω τ λη τ
ωτ α

+= ≈ , (8)   

where Qm is  the Q-factor of mechanical oscillation. Note, that using our theory we could 

have considered the case when the optical force is due to radiation pressure to obtain a 

much higher value of the threshold,   

 
2 2

2 2
, 2 2

0.62 1 0.62c
th rad Si eff eff Si

m c m opt

P n cm m n c
Q F Q Q F

ω τ λ ω ω
ωτ

+≈ ≈  (8) 

because  in place of the thermal time tτ  a much shorter cavity lifetime ~ /c optQ cτ λ

would have been used, consistent with [9].  

To obtain input-output curves it is convenient to define all the relevant energies 

and power as ,/st st st thu U U= , /m m satu U U= , and /in in thp P P=  to obtain dimensionless 

laser  equations identical to the ones in [14,15]: 

 
( )

1 (1 )

1
2

st
in m st

t

m
st m

sat

du p u u
dt

du kTu u
dt U

τ

γ γ

⎡ ⎤= − −⎣ ⎦

= − +
. (9) 

Above threshold, the "population inversion" gets clamped at a threshold 1stu = and the 

steady-state solution for the energy of mechanical oscillation can be found as 

( )1 /m in inu p p= −   with the term in the denominator indicating the phenomenon of 

"gain compression" [18].  In real units we obtain for the output power dissipated by the 

mechanical beam and otherwise available to perform work 

( ) ( )1/out m p in th in thP U P P P Pγ η −= = −  with the slope efficiency being equal to the pump 

efficiency modified by the gain compression term ( ) 1/in thP P − . Using the second equation 

in (9) we can write for the linewidth:    

 ( )
( )

2

1 /
1

2

in th in th

eff st
in th

out

P P P P
u kT P P

P

γ
γ γ

γ

⎧ − <
⎪= − ≈ ⎨ >⎪
⎩

. (10) 
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We have performed “lasing” measurements for two devices for comparison with 

our model.  Device 1 (device 2) has the following properties: ω0/2π=101kHz (101kHz), 

γ/2π=5.54Hz (3.98Hz), Qm=1.89×104 (2.79×104), F=140 (380), Tcav=4.7% (4.1%), z1
-

1=1.6/nm (7.7/nm) and zsat=12.9nm (4.8nm). The dominant thermal time constant for 

these devices is estimated (via finite-element structural-mechanical modeling) to be 3.0 

μs (dominated by heat flow out of the DBR silicon slabs) [16]. The corresponding 

expansion term was estimated to be ( ) 3/ 18.3 10 /tR dz dT nm W= × [16]. We use a transfer 

matrix model to estimate the field penetration and thereby absorption into the DBR slabs 

[16]. With the Si absorption coefficient equal to 11.6 Si cmα −= we obtain 53.2 10α −≈ × and 

find the threshold powers for our two devices as 268 Wμ and 31.1 Wμ , respectively.  

We use the calculated result for the spring constant 92.75 10 /effK N nm−= × to obtain 

saturation powers sat satP Uγ= equal to 7.98fW and 0.86fW, respectively, with slope 

efficiencies of 113.1 10−× and 113.6 10−× , respectively.  

The results of our calculation are plotted in Fig. 2 with no fitting parameters used, 

along with our experimental results for device 1 and device 2. Our instrument bandwidth 

is 1 Hz, which is deconvolved from our measured Lorentzian lineshapes.  The 

experimental output powers are found by first converting our measured output laser 

oscillation amplitude into an oscillating displacement amplitude (zm as in Fig. 1b), which 

is then converted into a mechanical power. The experimentally observed threshold and 

linewidth are very well predicted by our theory in both devices. In the lower finesse 

device 1 the experiment shows earlier onset of saturation than theory, possibly due to 

influence of the higher order terms in the Taylor expansion of the photo-thermal force. In 

the higher finesse device 2 the observed output power is larger than predicted, which can 

be explained by the fact that in a higher Q cavity any small variation in laser wavelength 

can shift the position of the "quiescent" point away from the one used to minimize 

threshold and effectively increase the saturation power, furthermore, the coupling 

efficiency can vary between two devices by a small amount. Also, the oscillations in our 

device do not show a complicated, often multi-stable character observed in cantilevered 

designs [10,19] but are much closer to the almost linear characteristics of the phonon 
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laser in [12]. This can be explained by the fact that our cavity length is much shorter 

(LC=3 μm) and we can keep the laser tuned to a single quiescent point. 

We now describe "phonon lasing" on a quantum level. The majority of opto-

mechanical oscillators in which phonon lasing has been demonstrated are driven by 

radiation pressure and can be explained in the framework of Raman or Brillouin lasers: a 

parametric process in which the stimulated decay of a higher frequency photon creates a 

quantum of mechanical oscillation and a lower frequency (Stokes) photon in the cavity. 

[7,12]. But the situation is far more involved when the driving force is of a photo-thermal 

nature [5,10] and the interaction is mediated by a sequence of processes taking place 

inside the medium. The "lasing" can occur with either a blue or a red shifted pump (the 

latter being the case in our experiments) a fact that cannot be explained by conventional 

parametric and Raman-like processes. 

  The parametric explanation can be obtained on the microscopic level by noticing 

that the thermal expansion driving the oscillating mechanical object is a consequence of 

the anharmonicity of the binding forces in the crystalline lattice. It is precisely this 

anharmonicity that engenders the three-phonon quantum interactions, specifically the 

process in which a higher-energy thermally-excited acoustic phonon pω can split into two 

lower energy phonons.  Here, one is the phonon of the mechanical oscillating mode with 

frequency 0ω ("signal" phonon), while the other one is the thermal "idler" phonon with 

frequency 0pω ω− as shown in Fig.3.  The correspondence between the phonon 

anharmonicity and the second order optical nonlinearity is well established [20]. Hence, 

one can think of the oscillations as an "acoustic parametric oscillator".  It is critical that 

the the "pump" and "idler" phonons remain locked in phase with each other for all 

phonon modes pω since  the light inside the optical cavity is modulated by the mechanical 

oscillations of one of the mirrors as 0cos( )tω The number of photo-generated phonons is 

then modulated as 0cos( )tω ϕ+ , and this modulation can be interpreted as interference 

between the phonons pω and phonon side-bands 0pω ω± whose phases are coherently 

related. When / 2ϕ π= , (strong quadrature component in Eq. (1)), a buildup of coherent 

"signal" oscillations will result in a manner similar to that of an optical parametric 



 10

oscillator [21]. There is no need for all the thermal phonons at different frequencies pω to 

be coherent among themselves. It is quite sufficient to have a relatively small fraction of 

these phonons separated by the signal frequency 0ω  to be locked in a phase relationship 

imposed by the oscillations of optical power. It is the energy of these pairs, Ust that plays 

the role of the energy stored at the upper level of the conventional laser.  

This analogy easily explains the reasons for a low efficiency. First of all, only a 

small fraction of all the phonons are the coherently locked ones. Second, in each three 

phonon process the average pump photon of THz frequency creates less than a MHz 

frequency coherent phonon - essentially a Manley-Rowe limit in nonlinear optics [21].  

In conclusion, we have developed a set of phonon rate equations to describe self-

oscillation in opto-mechanical systems.  In analogy to the laser rate equations, our theory 

predicts a threshold optical power resulting in a linewidth narrowing and eventual 

linewidth collapse with a strong linear increase in oscillation amplitude.  The agreement 

with experimental results (threshold power and slope efficiency) is very good indicating 

that self-oscillation in opto-mechanical systems can be described as a mechanical lasing 

process in which a pump (optical input) generates coherent acoustic phonons (mechanical 

output) via second order nonlinear phonon interactions.  The collapse of the mechanical 

resonance linewidth and resulting strong increase in effective mechanical Q-factor is of 

interest for sensing applications, where a large Qm leads to an increased sensing 

resolution.  
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FIG. 1 (color online)  (a) Fabricated device and schematic showing micromechanical 

oscillator and optical Fabry-Perot cavity (b) Measured device 1 displacement amplitude, 

zm, for various optical powers, P0=13 μW and P1=206 μW.  The shaded curve is the 

calculated thermal noise spectrum.  Above threshold (Pin=2P1) the oscillation amplitude 

increases 20x compared to below threshold (Pin=P1).  

 

 

FIG. 2 (color online) Comparison of experimental (points) and theoretical (lines) results 

for two devices: a) device 1 output power and linewidth, b) device 2 output power and 

linewidth.  The open data points in (a) correspond to the measured spectra shown in 

Fig. 1b.     

 

FIG. 3 (color online) The lasing cycle in the photo-thermal oscillator: the oscillating 

mechanical mode modulates the optical power in the cavity and the temperature 

establishing a phase coherence (ωp and ωp-ω0) between some of the otherwise thermally 

incoherent phonons. Coherent phonons at the difference frequency 0ω  are generated in 

the resonant mechanical mode via anharmonicity. 

 

 
 

 

 
 

Fig.1 (single-column width) 
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Fig.2 (single-column width) 

 

 

 
 

Fig.3 (single-column width) 

 


