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The late-time accelerated expansion of the universe could be caused by a scalar field that is
screened on small scales, as in chameleon or symmetron scenarios. We present an analogy between
such scalar fields and electrostatics, which allows calculation of the field profile for general extended
bodies. Interestingly, the field demonstrates a ‘lightning rod’ effect, where it becomes enhanced
near the ends of a pointed or elongated object. Drawing from this correspondence, we show that
non-spherical test bodies immersed in a background field will experience a net torque caused by the
scalar field. This effect, with no counterpart in the gravitational case, can be potentially tested in
future experiments.

PACS numbers:

Among the host of cosmological observations that
the concordance model, ΛCDM, accounts for [1] the
late-time accelerated expansion of the universe poses
one of the most compelling problems in physics. As
inferred from different distance measurements, the en-
ergy density of the universe is presently dominated by
a dark energy component with strongly negative pres-
sure; in ΛCDM this role is played by a cosmological
constant Λ. Its extremely small value, at odds with
theoretical expectations, has prompted the exploration
of alternative models in which a scalar field φ causes
the cosmological acceleration (see e.g. [2–4]).

To obtain dark energy behavior with an evolution
of the energy density, however, the scalar must be ex-
tremely light, and generically mediates horizon ranged
interactions. Interestingly, constraints from fifth force
experiments can be evaded in modified gravity theo-
ries, where screening mechanisms (reviewed in [5]) are
at play in dense environments. The scalar could then
have significant couplings with ordinary matter at the
fundamental level, but the range of the scalar mediated
force becomes small enough to conform to terrestrial
measurements [6]. The force gets further reduced for
relatively large bodies if, as in e.g. chameleon or sym-
metron scenarios, it is only sourced over a thin shell
under the surface of the body, thus avoiding conflict
with precision measurements of gravity in the sparser
environment of the solar system.

In this Letter, we construct a mathematical anal-
ogy between the chameleon scalar field and the electro-
static potential. This analogy is in the same spirit as
the many systems identified in the chapter devoted to
electrostatic analogs in Feynman’s classic text [7], for
example, the uniform illumination of a plane, or the
flow of an irrotational fluid past a sphere. The under-
lying principle at work here is that the same equations
have the same solutions—electrostatics is not germane
to the analogous system, but rather the phrase ‘elec-

trostatic analogy’ serves as proxy for saying that the
analogous system obeys the same differential equations
as electrostatics. Of course, not all phenomena from
an electrostatic system will have counterparts in the
analogous system and vice versa; nonetheless, as Feyn-
man shows, one can fruitfully export intuition and so-
lutions from electrostatics to its analogs. We show in
this Letter that under conditions relevant to terrestrial
experiments the chameleon obeys the same equations
as the electrostatic potential. Our central finding is
that the chameleon field outside of elongated bodies
such as ellipsoids is enhanced relative to the spherical
bodies typically considered. This shape enhancement
can be exploited by experimenters to probe new regions
of chameleon parameter space, even in the experimen-
tally unfavorable thin shell regime.

Fields featuring screening mechanisms often appear
in scalar-tensor modifications of general relativity. We
choose a chameleon field φ to exemplify our calcula-
tions [8, 9], but our results extend to other mod-
els, like the symmetron [10–12], which also exhibit
the thin shell. In these models, matter follows the
geodesics of the metric g̃µν = A2(φ)gµν , where φ is
a scalar field. Due to this conformal coupling the
effective potential that appears in the Klein-Gordon
equation includes a piece that depends on ρm the
density of matter,Veff (φ) = V (φ) + A(φ)ρm. In the
chameleon family of models V (φ) is monotonically de-
creasing while A(φ) is monotonically increasing [8, 9].
With this choice the effective potential has a minimum;
both the value of the field at the minimum and the
mass of the field, m2

φ = ∂2Veff/∂φ
2, depend on ρm.

Thin shells do not exist for all couplings and poten-
tials [13], so from now on we make the usual choice
A(φ) = eβφ/Mpl . Replacing the dimensionless constant
β by α(φ∞) ≡Mpl d logA/dφ, where Mpl = 1/

√
8πG,

our results also apply to generic conformal couplings.

For static configurations of the field in a weak grav-
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itational background, the chameleon obeys the Klein-
Gordon equation

∇2φ = ∂Veff/∂φ. (1)

In general this is an unwieldy non-linear differential
equation, but in some regimes, approximations allow
for its easy solution. For example, the chameleon
field outside a sphere (radius Rc, density ρc, Newto-
nian gravitational potential Φc ) immersed in a uni-
form background medium (density ρ∞ < ρc) is well-
approximated by a Yukawa profile [8, 9]. There are
two versions of the Yukawa profile, depending on the
density contrast between the body and its environ-
ment [8, 9]. If the density contrast is slight, the body
does not disturb the surroundings too much, and the
field is only slightly perturbed from the value which
minimizes Veff corresponding the density ρ∞ ( we de-
note this value φ∞). This is known as the thick shell
regime; see [9] for details. If a chameleon field with
the canonical gravitational-strength coupling β ∼ 1
was ambient, bodies with thick shells would experi-
ence a chameleon force of the same magnitude as their
gravitational force, making detection of the chameleon
field easy [8]. However virtually all terrestrial objects
are in what is known as the thin shell regime, so we
henceforth ignore the thick shell regime. In the thin
shell regime, the density contrast is great enough so as
to make the field inside the body virtually impervious
to the field outside the body. That is, throughout the
bulk of the body (what we will call the core region) the
field simply sits at the minimum of Veff appropriate to
the density ρc; we call this value φc. It only starts to
‘see’ the exterior density as r approaches Rc, and only
over the course of a thin shell of material (thickness
∆Rc) just underneath the surface of the body does the
field begins to vary. Once outside the body, the field is
well-described by a Yukawa profile

φ(r) ≈
( −β
4πMPl

)(

3∆Rc

Rc

)

Mce
−m∞(r−Rc)

r
+ φ∞,

(2)
where

∆Rc

Rc
≡ φ∞ − φc

6βMPlΦc
≪ 1 (3)

Note however that under most circumstances of in-
terest (such as a vacuum chamber experiment to probe
violations of the equivalence principle), the argument
of the exponent is so small that the chameleon profile
outside the body is 1/r for all intents and purposes:

φ = φ∞ + (φc − φ∞)
Rc

r
. (4)

which is the same as Eq. (2) as the reader can check.
To summarize, in the thin shell regime, φ is constant

throughout its core. Only a thin shell of material just
underneath the surface contributes to the exterior field,
where the profile is technically Yukawa. Given the den-
sities and distances relevant to a terrestrial experiment,
we can ignore the exponent, yielding simply a 1/r be-
havior.
But we can also obtain this 1/r behavior in a simpler

way: a massive Yukawa profile results from making
a second order Taylor expansion of the field around
its minimum, reducing Eq. 1 to ∇2φ ≈ m2φ. If we
find later we can ignore the mass, we may as well just
solve Laplace’s equation, ∇2φ = 0 to determine the
chameleon field exterior to the body. The solution to
Laplace’s equation in spherical coordinates is simply
φ = A+B/r where A,B are determined by boundary
conditions. Very far from the sphere we should have
φ → φ∞, and at r = Rc we assume φ = φc, hence
A = φ∞ and B = (φc − φ∞)Rc. Thus we recover
Eq. (4).
Note the collective behavior of the chameleon field

for a thin shelled sphere is precisely the same as the be-
havior of the electrostatic potential ψ for a conducting
sphere: inside the sphere both ψ and φ are constant,
and outside the sphere both fields obey Laplace’s equa-
tion. In a conductor there is a thin layer of charge
residing on the surface that sources the electric field
outside the sphere; similarly inside the thin shell re-
gion the chameleon field Eq. (1) may be approximated
as Poisson’s equation, with ∇2 = βρc/MPl.
Thus there is an analogy between the chameleon field

for thin shelled objects and the electrostatic potential
of conducting objects, by the principle that the same
differential equations have the same solutions.
Let us examine more closely the charged surface

layer. We know how to interpret this in an electro-
static context– we say there is a surface layer of electric
charge σ, which is related to the external field gradient
via ∂ψ/∂n = σ, where n is the direction normal to the
surface (and we have taken ǫ0 = 1). Similarly we can
write ∂φ/∂n = ̺δ where ̺ = βρc/MPl is the volume
density of ‘chameleon charge’ and δ is the thickness
of the layer over which this chameleon charge is dis-
tributed. For the sphere, setting ∂φ/∂n = (βρc/MPl)δ,
and solving for δ we find

δ =
(φ∞ − φc)Rc

6βMPlΦc
, (5)

which is identical to the thickness of the shell ∆Rc

found in a completely independent way by Khoury
and Weltman, (Eq. (3)). This suggests we interpret
βρc/MPl as the volume density of ‘chameleon charge’.
Doing so independently reproduces the thickness of the
shell derived in [9], and is consistent with Eq. (1) reduc-
ing to Poisson’s equation inside the shell region with
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the RHS given by βρc/MPl. This chameleon charge
represents the material within the body that interacts
with the chameleon field outside, and that it is con-
fined to the shell/surface layer. Note further that the
the thick shell regime does not extrapolate from the
thin shell regime increasing the thickness of the shell
(in fact it doesnt extrapolate at all).
Given that the thin shell effect arises via the density

contrast and boundary conditions, it stands to reason
that although the effect was first derived for a sphere,
ceteris paribus a less symmetric shape would still pos-
sess a thin shell. We can use the analogy to deter-
mine the chameleon profile for less symmetric shapes;
in this Letter we work with ellipsoids to illustrate the
interesting shape-dependent effects we have identified.
Ellipsoids also have the merit that they can also be
compared with spherical results in the limit that the
eccentricity ε→ 0.
Ellipsoids are described by the prolate spheroidal co-

ordinates (ξ, η, ϕ); the surface of an ellipsoid has radial
coordinate ξ = ξ0; furthermore ξ = 1/ε. η measures
the latitude, with the poles at η = ±1 and the equa-
tor at η = 0. It is convenient to introduce an equiv-
alent radius Re such that the volume of the ellipsoid
is 4

3πR
3
e . We first consider the chameleon field pro-

duced by an ellipsoid of arbitrary material, assuming
only that it possesses a thin shell. Its interior is at a
constant value determined by the density ρc, and in the
exterior it is the solution to Laplace’s equation. The
relevant solution to Laplace’s equation in these coordi-
nates is obtained from [14];

φ = φ∞ + (φc − φ∞)
Q0

0(ξ)

Q0
0(ξ0)

(6)

where Q0
0(ξ) = ln[(ξ + 1)/(ξ − 1)]/2 and we have used

appropriate boundary conditions. Assuming r ≫ a
where a is the interfocal distance of the ellipsoid and r
is the radial spherical coordinate, the chameleon profile
can be written

φ = φ∞ − f(ξ0)(φ∞ − φc)
Re

r
(7)

where

f(ξ0) =
2

[ξ0(ξ20 − 1)]1/3
1

ln[(ξ0 + 1)/(ξ0 − 1)]
, (8)

and we have set a = 2Re/[ξ0(ξ
2
0 − 1)]1/3.

In comparing to the case of the sphere (Eq. 4) we
see the ellipsoid has a shape enhancement f(ξ0) > 1
which diverges as the ellipsoid flattens to a line. To
see the effect this shape enhancement might have on
experiment, consider the following Cavendish-type set
up. A test mass is located some distance from the pole

of a spherical source body. There is of course a gravita-
tional attraction between the source and the test mass;
if the chameleon field exists, there will also be a ‘fifth’
force exerted on the test mass by the chameleon field
of the source. The chameleon force on a test mass m
is given by [9]

F5 = −m∇(βφ/MPl). (9)

Using the chameleon profile outside the sphere, Eq. 4,
there will be unmitigated suppression of the force via
the thin shell factor. However, if we were to use an
ellipsoidal source instead of a spherical one, we would
use Eq. 7 instead of Eq. 4 in calculating the force. The
ellipsoidal profile still possesses the thin shell suppres-
sion factor, but the suppression effect can leveraged by
the enhancement f(ξ).
We refer to this mitigation of the suppression fac-

tor as a ’lightning rod’ effect because in electromag-
netism the electric field at the polar region of an elon-
gated object is enhanced relative to the polar region
of a sphere, though we stress once again that electro-
magnetic phenomena are not germane to this set up.
The enhancement arises as a feature of the elongated
ellipsoid, which has a preferred axis (its major axis)
which the sphere lacks. The reader can confirm that
as ε → 0, the spherical results are obtained. An ex-
periment would likely probe the near field close to the
sharp tip of a dense body rather than the asymptotic
field discussed above. We will return to the analysis of
realistic force experiments in future work.
We now turn to another shape enhancement effect

demonstrated by the chameleon field. We begin by
calculating the chameleon force on an extended body
that cannot be treated as a test mass. It follows from
Eq. 9 that the force on an extended body with density
ρc and volume element dV be given by

F =

∫

vol

dV
βρc
MPl

∇φ. (10)

In the thin shell regime φ = φc in the core so it is
only necessary to integrate over the shell. As noted
the field obeys Poisson’s equation in this region. We
denote the thickness of the shell as ∆R, and take z to
be the coordinate along the local normal to the surface
n̂. Assuming the gradient of the field vanishes at z = 0
where the shell meets the core, we obtain

φ = φc +
1

2

βρc
MPl

z2. (11)

Substituting eq (11) into eq (10) yields

Fnet =

∫

da

∫ ∆R

0

dz

(

βρc
MP

)2

z n̂ =
1

2

∫

da

(

βρc∆R

MPl

)2

n̂.

(12)
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Using βρc∆R/MPl = ∂φ/∂n we can write this as

Fnet =
1

2

∫

da

(

∂φ

∂n

)2

n̂. (13)

Note that this is the same expression for the force on a
conductor in an electrostatics context, if we take ǫ0 = 1
and replace φ by the electrostatic potential ψ. Using
this expression one can calculate the chameleon force
on a spherically symmetric extended body and show
that it only differs from that of the test mass by the
thin shell factor. At first this may seem surprising,
because it says a test mass experiences greater force
than the extended object of the same mass. But the
entire test mass experiences the chameleon field gradi-
ent whereas in the extended body, only the material in
the shell sees a field gradient, so the suppression makes
sense. In graduating from a test mass to an extended
sphere, the body ‘acquires’ a thin shell.

So the chameleon field exerts a force on an extended
body given by Eq. 13. It follows that if this force acts at
a distance r it will result in a torque, given by τ = r×F:

τ =
1

2

∫

da (∂φ/∂n)2r× n̂. (14)

Note that an extended body can experience a torque,
where a true test mass cannot–treated as a point par-
ticle it has no radial extent and thus lacks a lever
arm at which the force can act to produce a torque.
Combining this result with our earlier finding that the
chameleon field produced by an ellipsoid is enhanced
in the polar regions, we suspect an ellipsoid immersed
in a chameleon field will experience non-zero torque,
due wholly to the chameleon field. To determine this
we need to pull together several results. Khoury and
Weltman [9] argue that the ambient chameleon field in-
side a vacuum chamber has a uniform gradient, whose
magnitude χ = |∇φ| they estimate. Introducing a test
mass would not disrupt this field configuration but
since we are considering an extended source we seek
the solution to Laplace’s equation in which the am-
bient chameleon field adjusts to the presence of this
extended body, which is also a source of chameleon
field. Morse and Feshbach [14] provide the solution
to Laplace’s equation for a conducting ellipsoid whose
interior is held at a constant potential and which is
immersed in a uniform electric field that makes an an-
gle γ with the ellipsoid’s major axis; by analogy the
chameleon field for a thin shelled ellipsoid immersed
in a chameleon field with uniform gradient is given by
the same expression. The resulting expression for the
chameleon field is φ1 + φ2 where φ1 is given by Eq. 6)

and

φ2 = χ
Re

[ξ0(ξ20 − 1)]1/3
{cos γ η

[

ξ0
Q0

1(ξ0)
Q0

1(ξ)− ξ

]

+ sin γ cosϕ
√

1− η2

[

√

ξ20 − 1

Q1
1(ξ0)

Q1
1(ξ)−

√

ξ2 − 1

]

}

(15)

Here Q1
0(ξ) = ξQ0

0(ξ)−1 and Q1
1(ξ) =

√

ξ2 − 1[ξ/(ξ2−
1)−Q0

0(ξ)].
For this profile, the chameleon torque on the ellipsoid

has one non-vanishing component

τy = πR3
eχ

2 sin γ cos γ g(ξ0) (16)

where the shape dependent factor

g(ξ0) =
2/3 + 2(1− ξ0)Q

0
1(ξ0)

Q0
1(ξ0)Q

1
1(ξ0)ξ

5/3
0 (ξ20 − 1)3/2

. (17)

Note that the torque vanishes in the spherical limit
ξ0 → ∞. It is remarkable that the chameleon field
produces a torque because a gravitational field with
uniform gradient would not produce a torque on an
ellipsoid[16]. Before estimating the magnitude of the
torque we point out several important features. τ is
independent of β and ρ; this is analogous to the cor-
responding electrostatic torque on a conductor being
independent of the total charge. The insensitivity of
terrestrial experiments to β is well-known [6] and un-
fortunate from the stand point of detection. However,
any value of β & 1 leads to the formation of a thin shell
for terrestrial objects, hence if the torque experiment
were to yield a null result (and all other experimen-
tal factors are accounted for), this entire range of β
would be ruled out. To estimate the magnitude of the
torque we follow [9] and use V (φ) = M5/φ, Rvac ∼ 1
m and M ∼ 10−3 eV. A reasonable choice of ellipsoid
is Re = 0.1 m, so that Re ≪ Rvac; this ensures the gra-
dient of the chameleon seen by the ellipsoid is uniform.
We choose ξ0 = 1.3 so that the ellipsoid is distinctly
non-spherical but not extremely elongated. With these
values we find that the torque ∼ 7×10−15 Nm. This is
promising as the Eöt-Wash experiments are sensitive
to torques of this magnitude [15], so an experiment
with similar sensitivity could rule out β > 1. Paren-
thetically we note that using an ellipsoid constructed
from electrically insulating material in an actual ex-
periment would be desirable for suppressing spurious
electrostatic torques.
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