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An intricate interplay between superconductivity, pseudogap and Mott transition, either
bandwidth-driven or doping-driven, occurs in materials. Layered organic conductors and cuprates
offer two prime examples. We provide a unified perspective of this interplay in the two dimensional
Hubbard model within cellular dynamical mean-field theory on a 2 × 2 plaquette and continuous-
time quantum Monte Carlo method as impurity solver. Both at half-filling and at finite doping,
the metallic normal state close to the Mott insulator is unstable to d-wave superconductivity. Su-
perconductivity can destroy the first-order transition that separates the pseudogap phase from the
overdoped metal. Yet that normal state transition leaves its marks on the dynamic properties of
the superconducting phase. For example, as a function of doping one finds a rapid change in the
particle-hole asymmetry of the superconducting density of states. In the doped Mott insulator,
the dynamical mean-field superconducting transition temperature T d

c does not scale with the order
parameter when there is a normal-state pseudogap. T d

c corresponds to the local pair formation
temperature observed in tunneling experiments and is distinct from the pseudogap temperature.

PACS numbers: 71.27.+a, 71.10.Fd, 71.10.Hf, 71.30.+h

The proximity between Mott insulator and supercon-
ductor is one of the most intriguing puzzles in Con-
densed Matter Physics [1]. Indeed, in a Mott insula-
tor, strong Coulomb repulsion between electrons is at
the origin of the phenomenon, while superconductivity is
usually associated with effective attraction. In half-filled
band layered organic conductor, pressure induces a first-
order transition between a d-wave superconductor and
a Mott insulator. This is a bandwidth-induced transi-
tion. The maximum superconducting transition temper-
ature Tc is at the first-order phase boundary [2]. On the
contrary, in high-temperature superconductors, while su-
perconductivity emerges upon doping a Mott insulator,
Tc has a dome shape and disappears before the doping
driven Mott transition [3]. In addition, the normal state
near the Mott insulator exhibits a pseudogap [4].

Weak coupling approaches to the simplest model that
includes screened Coulomb interaction and band struc-
ture effects, the Hubbard model, show that d-wave su-
perconductivity can arise as a secondary effect from
exchange of antiferromagnetic fluctuations [5–10]. At
strong coupling, renormalized mean-field theory [11–13],
slave particle [14, 15] and variational approaches [16, 17]
also suggest the presence of d-wave superconductivity.
However, to study both the Mott transition and d-wave
superconductivity, one must resort to cluster versions of
dynamical mean-field theory [18–21]. Up to now, results
have been obtained mostly at zero temperature [22–31].
There are also a few results on the transition tempera-
ture [32–35] but there is no systematic study of the in-
terplay of superconductivity and pseudogap with both
bandwidth-driven and doping-driven Mott transitions at
finite temperature. This is the problem that we solve

in this paper by studying the two dimensional Hubbard
model with cellular dynamical mean-field theory on a pla-
quette [20, 21] using state of the art Continuous-Time
Quantum Monte Carlo method as impurity solver [36–
39]. Notice that quite generally [40] there is no con-
tinuous symmetry breaking in two dimensions at finite
temperature. This is true for d-wave superconductivity
as well [41]. However, it is still physically meaningful to
study the superconducting phase at the dynamical mean-
field level since the corresponding transition temperature
T dc indicates where the superconducting fluctuations be-
gin to develop. Three-dimensional effects eventually al-
low true long-range order at lower temperature. Compe-
tition with other long-range ordered phases [42], which
are influenced by many factors including frustration, will
be considered in future work.

After we present the model and method, we discuss in
turn the bandwidth-driven and the doping-driven cases
before we provide a unified view and discussion of the
results.

Model and method.– We consider the two dimensional
Hubbard model on a square lattice,

H = −
∑
ijσ

tijc
†
iσcjσ+U

∑
i

(ni↑ − 1/2) (ni↓ − 1/2)−µ
∑
iσ

niσ

(1)
where c+iσ and ciσ create and annihilate an electron of
spin σ on site i, niσ = c+iσciσ, t is the nearest neighbor
hopping amplitude, µ is the chemical potential and U the
screened Coulomb repulsion. We solve this model using
cellular dynamical mean-field theory (CDMFT) [20, 21].
This approach takes a cluster of lattice sites, here a 2×2
plaquette, out of the lattice, and embeds it in a self-
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consistent bath of non-interacting electrons. The action
of the plaquette coupled to the bath reads

S = Sc +

∫ β

0

dτ

∫ β

0

dτ ′ψ†(τ)∆̂(τ, τ ′)ψ(τ ′), (2)

where Sc is the action of the cluster and ∆̂ the hybridiza-
tion matrix. From now on, the symbol ˆ indicates a ma-
trix in cluster indices. The hybridization ∆̂ is determined
by the self-consistency condition

∆̂(iωn) = iωn + µ− t̂c − Σ̂c(iωn)− Ĝ(iωn)−1 (3)

which states that infinite lattice and plaquette have same
self-energy and same Green’s function on the plaquette.
Here Σ̂c is the cluster self-energy, t̂c the cluster hopping,
and Ĝ(iωn) =

∑
k̃

1
iωn+µ−t̂(k̃)−Σ̂c(iωn)

, where k̃ is the su-

perlattice momentum. We solve the impurity (plaque-
tte+bath) problem Eq. (2) using continuous-time quan-
tum Monte Carlo method [36, 39], which sums all dia-
grams obtained by the expansion of the action Eq. (2)
with respect to the hybridization ∆̂. For the super-
conducting state in cluster momentum basis, the cluster
Nambu Green’s function reads

GK(τ) =

(
GK↑(τ) FK(τ)
F+
K (τ) −G−K↓(−τ)

)
(4)

where F is the anomalous Green’s function. For d-wave
superconductivity, F(π,0) = −F(0,π) is the only non-zero
component. To determine the parameter space where the
superconducting phase is allowed by the CDMFT equa-
tions, we monitor the superconducting order parameter
Φ = 〈F(π,0)(τ = 0+)〉.
Superconductivity and interaction-driven Mott

transition.–First, consider the normal state of the
half-filled two dimensional Hubbard model. Previous
works revealed a first-order transition at moderate
interaction between a correlated metal and a Mott
insulator [43–45]. As shown in Fig. 1a, in the (U, T )
plane there is a hysteresis region (in red/light grey)
where two mean-field solutions can be obtained. This
region is bounded by the spinodals Uc1(T ) and Uc2(T )
(red lines with triangles) where the double occupation
shows sudden jumps. The first-order metal-insulator
transition lies within this region and starts at the critical
Mott endpoint (UMIT, TMIT) ≈ (5.95t, 1/12t).

Next we allow for d-wave symmetry breaking in the
CDMFT equations and perform scans as a function of U
for different temperatures. As input seed of the CDMFT
iterative procedure we use the normal state converged
solution, and we add a small perturbation in the anoma-
lous component of the hybridization matrix. We obtain
a converged superconducting solution, characterized by
a nonzero Φ, close to the Mott transition. No supercon-
ducting solution is found if we use the metastable insulat-
ing solution as seed. Fig. 1b shows the order parameter

Φ for the low temperature T/t = 1/100. Within our nu-
merical precision, as a function of U , the order parameter
exhibits two jumps: one at U(T/t = 1/100) ≈ 5.45 where
there is a transition from metal to superconductor, and
one at Uc2(T/t = 1/100) ≈ 5.65 where the transition is
between superconductor and insulator.
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FIG. 1: (a) Temperature T versus interaction strength U
phase diagram of the half-filled 2D Hubbard model obtained
by CDMFT. Three phases can be distinguished: correlated
metal, Mott insulator, and superconductor. In the normal
state, there is a first-order transition at finite temperature
between a correlated metal and a Mott insulator, bounded by
the spinodals Uc2(T ) and Uc1(T ), defined as the loci where
the double occupation shows a jump. The superconducting
phase (blue region) is defined by the loci where |Φ| 6= 0 (filled
blue circles) and is delimited by the superconducting transi-
tion temperature T d

c . Extrapolations to T = 0 are a guide to
the eye. On the right vertical axis we convert into physical
units by using t = 0.35eV. Inset: zoom on the superconduct-
ing phase. (b) d-wave superconducting order parameter Φ
as a function of U at half-filling and for T/t = 1/100. (c )
Density of states ρ(ω) for U = 5.6t and T/t = 1/100 for the
normal-state Mott insulator, the normal-state metal and the
superconductor (dotted, dashed, and solid lines, respectively).

By performing the above procedure for different tem-
peratures, we obtain the superconducting region in the
(U, T ) plane (blue/dark grey region in Fig. 1a), defined as
the region where Φ 6= 0. With decreasing temperature,
the superconducting phase emerges from the normal state
metal close to the Mott transition, i.e. for U < Uc2, and
rapidly disappears below Uc1. The largest superconduct-
ing transition temperature T dc (U) occurs, along with the
largest order parameter, around the first-order boundary
with the insulator, as in the organics [2].

Physically, the CDMFT superconducting transition
temperature T dc is the temperature below which Cooper
pairs form within the cluster. Previous work [33] suggests
that T dc converges to a finite value with cluster sizes up
to 26 sites. Long-wavelength thermal and quantum fluc-
tuations in the magnitude [46] and phase of the order
parameter [47–50] will lead to an actual superconduct-
ing transition temperature Tc smaller than T dc . Long-
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FIG. 2: (a) Temperature T versus doping δ phase diagram
at U = 6.2t > UMIT, obtained by CDMFT. Four phases can
be recognized: in the normal-state, there is a first-order tran-
sition at finite temperature between a pseudogap and a cor-
related metal, bounded by the spinodals δc1(T ) and δc2(T )
(up and down triangles respectively). A crossover takes place
above the critical endpoint (δp, Tp) and defines the pseudogap
temperature T ∗ [51], determined by max dρ(ω = 0)/dT . The
third phase is the Mott insulator at δ = 0 (green solid line).
The fourth phase, the superconducting one, is delimited by
T d
c (δ), i.e. the temperature below which |Φ| 6= 0. Extrapola-

tions to T = 0 are a guide to the eye. Inset: chemical potential
µ versus doping δ = 1− n at T = 1/100 for the normal-state
(triangles) and the superconducting state (circles). The jump
in the dopings identify the spinodal points between the two
normal-state metals, i.e. the pseudogap (PG) and the corre-
lated metal (CM). The transition is removed by the super-
conducting state: µ(δ) does not show any sign of hysteresis.
(b) d-wave superconducting order parameter Φ as a function
of doping for temperatures T = 1/64 > Tp and 1/100 < Tp.
On the right vertical axis we convert into physical units by
using t = 0.35eV.

wavelength antiferromagnetic fluctuations on the other
hand can increase T dc , as seen in weak-coupling calcula-
tions [5–9]. Competing long-range order would reduce
or eliminate T dc [42]. Nevertheless T dc informs us on the
regime of temperature where strong-coupling and short-
range nonlocal correlations lead to pairing. These effects
lead to a strong d-wave pairing gap in the density of
states of Fig. 1c.

Superconductivity and doping-driven Mott transition.–
We turn to the doped Mott insulator. Previously, we
explored the normal state phase diagram [52, 53] and
demonstrated that the first-order transition at half-filling
naturally extends at finite doping, and that it can take
place between two metallic states: a correlated metal at
large doping and a pseudogap [51]. Fig. 2a shows the
(δ, T ) plane at U = 6.2t > UMIT. The spinodals δc1(T )
and δc2(T ), determined by the jumps in the doping δ
(see inset), envelop the transition and terminate at the
critical point (δp, Tp), which is the extension of the Mott
critical point away from half-filling. The value of (δp, Tp)
moves to larger dopings and smaller temperatures as U

increases. At U = 6.2t, Tp is sufficiently large to be acces-
sible by simulations. Associated with the critical point
(δp, Tp) there is a Widom line [54], and the pseudogap
temperature T ∗(δ) occurs along this line [51].

Next, we study the superconducting phase as a func-
tion of doping. The superconducting order parameter is
shown in Fig. 2b for different low temperatures. In the
Mott insulator at zero doping, Φ = 0 and thus there is
no superconductivity. Upon hole doping, Φ increases,
reaches a maximum for a doping near the normal-state
first-order transition between the pseudogap and corre-
lated metal, and, with further doping, decreases.

By monitoring Φ(δ) for different temperatures, we can
construct the superconducting region in the (δ, T ) plane
(blue/dark grey region in Fig. 2a). The transition tem-
perature T dc is higher than the critical temperature Tp,
and superconductivity eliminates the first-order transi-
tion of the underlying normal state. Indeed, the δ(µ)
curve in the inset of Fig. 2a) is continuous. T dc is zero
at δ = 0, but it is finite for δ → 0+ and does not show
large variation when there is a pseudogap in the under-
lying normal state. In particular, T dc (δ) does not ap-
preciably increase as we approach half-filling while the
pseudogap temperature T ∗ does, showing that the two
phenomena are distinct, as also found in high-field trans-
port measurements [55, 56]. With further doping, when
the superconductivity evolves from a correlated metal,
T dc decreases and vanishes at large doping. Therefore,
our results imply that Mott physics causes Φ to drop at
small doping, but does not produce a fall in T dc . T dc cor-
responds to Cooper pair formation within the plaquette.
We associate T dc to the temperature at which a super-
conducting gap appears in tunneling experiments [57, 58]
without long-range phase coherence. Experimentally, in
the doping range where there is a normal-state pseudo-
gap, that temperature scale is smaller than T ∗ and larger
than the actual Tc. The small value of Φ suggests that
the actual Tc of the system will vanish at small doping
due to competing order [42] or to disorder [59, 60] or
to long wavelength (classical and quantum) fluctuations
of the magnitude [46] or the phase [47–50] of the order
parameter.

Even though superconductivity eliminates the first-
order transition in the underlying normal state, signa-
tures of that transition remain in the dynamics of the
superconducting state. This is shown by the evolution
of the density of states with doping in Fig. 3 where the
solid line is for the superconducting state and the dashed
line for the normal state. At low doping, superconductiv-
ity originates from the pseudogap and the superconduct-
ing density of states inherits its large particle-hole asym-
metry [34], as found in experiments [61]; On the other
side of the transition, at large doping, superconductivity
emerges from the normal state correlated metal, and the
superconducting density of states at low frequency close
to the normal-state transition is particle-hole symmetric.
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FIG. 3: Low frequency part of the local density of states ρ(ω)
at U = 6.2t, T/t = 1/100 for the normal-state and the su-
perconducting state (red dashed and blue solid lines). For
δ ≈ 0.01, 0.03, 0.04 (panels a, b, c respectively) the super-
conducting state emerges from the underlying normal-state
pseudogap metal. It inherits a strong particle-hole asymme-
try. For δ ≈ 0.06 the superconducting state emerges from a
correlated normal-state metal, and the density of states, near
the transition, approximately recovers particle-hole symmetry
at low frequency.

Our contribution is to link the features of the supercon-
ducting density of state to the underlying normal state
first-order transition.

Superconductivity from Mott physics.–The above anal-
ysis shows that superconductivity arises by approaching
the Mott insulator as a function of both the interaction
strength and the doping. The two routes to create su-
perconductivity are related, as sketched by the (U, µ, T )
phase diagram in Fig. 4. The critical endpoint (µp, Tp),
hidden by the superconducting phase in the (µ, T ) plane
of that figure, is connected to the familiar Mott endpoint
(UMIT, TMIT) at half-filling (see dotted line in Fig. 4).
The latter appears above the superconducting phase. Re-
cent works at half-filling [35] did not find a direct transi-
tion between superconductor and Mott insulator.

Previous CDMFT works [25, 27–29, 31, 34, 62] at zero-
temperature reported a doping dependence of the order
parameter Φ similar to the one found here, but the doping
dependence of T dc could only be surmised. Our contribu-
tion is to show that T dc does not scale with Φ(δ) when
a pseudogap is the underlying normal state. T dc remains
finite as the Mott insulator is approached, implying that
Mott physics does not suppress T dc even though it sup-
presses the order parameter. In the region where there
is a normal-state pseudogap, T dc represents a local pair-
formation [57, 58] temperature scale that is distinct from
both T ∗ and the actual superconducting long-range phase
coherence Tc. In addition, we find that a classical, not
quantum, critical point at finite temperature between a
pseudogap and a correlated metal [51–53], continues to
control the distinct pseudogap physics above T dc , even
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FIG. 4: Schematic temperature - chemical potential - interac-
tion strength phase diagram based on CDMFT solution of the
2D Hubbard model. Cut at particle-hole symmetry (µ = 0)
and at constant U > UMIT are shown. Since we set t′ = 0,
the phase diagram is symmetric with respect to µ = 0 plane.
The first-order transition between a metal and a Mott insu-
lator in the µ = 0 plane is connected with the first-order
transition between the pseudogap and a correlated metal in
the U > UMIT plane [52, 53]. Tp begins at TMIT. The super-
conducting temperature T d

c , delimiting the region where Φ is
non zero, is also shown. In the phase diagram, the supercon-
ducting phase emerges from the normal state metal close to
the Mott insulator.

though the superconducting phase replaces the normal-
state first-order transition at low temperature. This find-
ing has to be contrasted with the quantum critical point
reported in previous work [63]. Because those calcula-
tions were limited to high temperatures, they did not
detect the normal-state first-order transition.

The phase diagram as a function of interaction
strength, doping and temperature that we found shows
that a transition directly to the superconducting state
from a Mott insulator is possible at the dynamical mean-
field level, whether the transition is bandwidth or dop-
ing driven. Since T dc is finite at infinitesimal doping, the
transition appears as first-order in both cases. Hence, the
experimentally observed drop of Tc at low doping must
come from mechanisms not included here, such as long
wavelength fluctuations [46–50], competing order [42] or
disorder [59, 60]. Long-wavelength fluctuations should
be important near the Mott transition because the order
parameter decreases rapidly with decreasing doping, con-
trary to T dc . Yet, T dc retains a role as a local pair forma-
tion temperature [57, 58] and is distinct from the pseudo-
gap temperature T ∗. For sufficiently large U the super-
conducting state destroys the underlying first-order tran-
sition between the pseudogap and the correlated metal,
but signatures of this transition remain in the dynamical
properties of the superconductor.
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