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Molecular dynamics simulations are used to explore the physical mechanisms of electrowetting and
the limits of continuum theories. Nanoscale drops exhibit the same behavior seen in macroscopic
experiments: The contact angle θ follows continuum theory at low voltages and then saturates.
Saturation limits applications of electrowetting and its origin is of great interest. In the simulations,
saturation occurs when ions are pulled from the drop by large local fields. Saturation can be
controlled by changing temperature, screening or the energy binding ions to the fluid. We show
a local force balance equation for θ remains valid even after saturation and that the interface
approaches the equilibrium contact angle within a few nanometers of the solid.

In electrowetting, an applied voltage V changes the
macroscopic contact angle θ of a liquid drop on a solid.
While electrowetting has proved useful in manipulating
small drops [1–6], applications are limited because θ al-
ways saturates as V increases. The cause of saturation
and the physics underlying electrowetting have been the
subject of active debate [6–14], and previous theories
have been limited to continuum models that become in-
adequate as drops shrink to micro or nanometer scales.
In this letter, we use molecular simulations to explore

the atomistic underpinnings of electrowetting and the
limits of continuum theory. Nanoscale drops exhibit the
same behavior seen in macroscopic experiments. Initially,
the decrease in contact angle with increasing V follows
continuum theory, but θ saturates at large V . Satura-
tion occurs when charged molecules are pulled from the
drop and is controlled by local electric field strengths and
molecular binding. An alternative expression for θ based
on local force balance remains valid even after saturation
and explains why θ approaches the equilibrium contact
angle within a few nanometers of the solid. This is also
the typical scale of atomistic effects.
The basic process of electrowetting on dielectric

(EWOD), and the geometry of our simulations, are illus-
trated in Fig. 1(a). A dielectric layer of thickness D sep-
arates a conducting fluid drop and an electrode. As the
voltage between drop and electrode increases, the drop
spreads to lower the electrostatic energy. The associated
decrease in macroscopic contact angle θ(V ) is predicted
to follow the Young-Lippmann equation (YLE) [15, 16]

cos θ(V ) = cos θ0 + cV 2/2γ, (1)

where θ0 is the equilibrium contact angle at zero voltage,
c the capacitance per unit area and γ the liquid-vapor
surface tension. For the usual case of a dielectric that is
thinner than the drop diameter, c = ǫ/D, where ǫ is the
permittivity.
Experiments have observed electrowetting with a wide

range of fluids and substrates [17]. In all cases, results
follow the YLE at small V , but saturate before perfect

FIG. 1. (a-c) As the voltage between a cylindrical drop and
electrode (thick line) increases, the drop (shaded) spreads
along a dielectric of thickness D = 4.85σ. Solid lines show
cylindrical fits to the drop surface for y > 6σ. (d-f) Angle
of drop surface vs. height (points) and cylindrical fit (line).
The angle approaches θ0 near the solid, as shown in the inset
plots, where colors from blue to red also indicate increasing
charge density. A box of edge 2R = 8σ in (f) indicates the
volume used to define the force balance in Eq. 2. Chains have
4 beads, θ0 = 138o, and lB = 4.0σ.

wetting is achieved. Indeed, it is difficult to find systems
where θ can be reduced from above 90o to below 45o. A
variety of mechanisms for saturation have been proposed
[7–14], but no consensus has emerged for its origin.

One mechanism is based on the electrocapillary model
for the YLE. The equilibrium contact angle cos θ0 =
(γvs − γls)/γ, where γls and γvs are the liquid-solid and
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vapor-solid tensions. The YLE follows from the same
relation if the electrostatic energy per area in the di-
electric is incorporated into an effective liquid-solid ten-
sion, γls − cV 2/2. Ralston and coworkers have found
that saturation often occurs when this effective tension
becomes negative, indicating an instability [10, 12]. How-
ever, there is ambiguity in the values of γls and γvs which
are not measured directly[6], and recent measurements of
thin films show no change in the solid-liquid tension [18].

The YLE can also be derived from an electromechan-
ical view, using the local balance of capillary and elec-
trostatic forces along the interface [19–21]. A detailed
theoretical analysis [19] shows the interface angle fits Eq.
1 at large scales and approaches θ0 near the solid. Ex-
periments at mm scales support these calculations of the
drop shape [18, 21], but the theory does not provide an
explanation for saturation. This may reflect the approxi-
mations that are made. In particular, the fluid is treated
as a perfect conductor and D is the only length scale in
the model. The screening length, interfacial width and
other length scales become important as drop dimensions
decrease. Molecular dynamics simulations can determine
the role of these length scales and provide direct tests of
assumptions in the electrocapillary and electromechani-
cal interpretations. Previous simulations have provided
insight into electrocapillary effects [22, 23], but have not
examined EWOD.

Given the universal nature of the effects observed in
electrowetting, we use a generic molecular model that
has been useful in fundamental studies of wetting [24, 25].
The fluid consists of short chains of n spheres bound by
covalent bonds modeled with a FENE potential [26]. In-
termolecular interactions are modeled with a truncated
Lennard-Jones (LJ) potential with binding energy u,
molecular diameter σ, and cutoff distance rc = 2.5σ. The
substrate is the (111) surface of a rigid fcc crystal with
nearest-neighbor spacing 1.32 σ. The binding energy u′

of the LJ potential between fluid and solid was varied
to change θ0 [27]. A Langevin thermostat maintained
a constant temperature T above the glass temperature
Tg ∼ 0.5u/kB, where kB is Boltzmann’s constant [28].

Long-range Coulomb interactions between charges
were treated using a highly efficient and accurate
multigrid Particle-Particle Particle-Mesh algorithm [29].
Given the difficulty in accurately representing the molec-
ular level changes in ǫ near solid and liquid surfaces, we
used a uniform ǫ. Dielectric contrast will change the spa-
tial distribution of fringing fields, but as shown below,
this does not affect the saturation mechanism. To model
an electrode, we introduced image charges that enforced
a constant voltage at a depth D below the solid surface
(Fig. 1(a)). Values of c and γ were determined from sim-
ulations with a fluid film of uniform thickness [30] and
were nearly independent of V .
As noted above, several length scales that do not enter

previous continuum treatments may become important

at the nanoscale. Two structural lengths are the molec-
ular diameter σ ∼ 0.5nm and the full width ξ of the fluid
interface. In most cases the two are of the same order,
and in our simulations ξ ∼ 3σ. The strength of dielec-
tric screening can be characterized by the Bjerrum length
lB = e2/ǫkBT , at which Coulomb interactions equal the
thermal energy. Increasing ǫ reduces both the Bjerrum
length and the effective strength of Coulomb interactions.
Another scale is the screening length λ for charge near
the solid wall. In our simulations, atomistic effects are
important and λ ∼ 2− 4σ (Fig. 1(d-f)) [29].
We studied a wide range of systems and found all gave

behavior similar to that shown in the figures. The tem-
perature was varied from kBT/u = 0.6 to 0.9, with re-
sults for 0.7 shown below. The ratio of fluid interac-
tions with fluid and solid, u′/u, was changed from 0.4
to 0.6 (θ0 = 138◦ and 114◦). Results for D = 4.86σ
(c = 0.19ǫ/σ) are shown but similar results are found for
D/σ = 1.62 to 15.67. Chain length was varied from 4 to
8 (γσ2/u = 1.08 and 1.17). The dielectric constant was
varied by more than an order of magnitude, changing
lB/σ from 4 to 96.
Simulations of electrowetting used a cylindrical drop

geometry to eliminate line tension effects [16, 27], and
results are averaged along the cylinder’s axis, z. Periodic
boundary conditions were applied in all three directions.
The period along z, 10.6 σ, was small enough to pre-
vent the pearling instability [16]. Long periods were used
along x and y (116 σ and 51.8 σ) and forces from periodic
images were removed using the correction in Ref. [31].
Heights are measured from the top layer of solid atoms.
Results were averaged over four independent simulations
with 6192 beads. Consistent results were obtained when
the number of beads was tripled and/or system dimen-
sions doubled.
The voltage is changed by adding an electron charge

e to one sphere on a given number of chains and equi-
librating for at least 3000τ , where τ =

√

mσ2/u is the
characteristic LJ time. Results were then averaged for
a further 3000τ . To ensure there was sufficient time
for equilibration, results for increasing and deceasing V
were compared. No difference was seen before saturation
within the statistical errorbars. These are smaller than
the symbol size in the figures.
Figure 1 shows how the drop shape changes with V ,

as well as the distribution of charge. The interface was
defined as the surface where the density was half the bulk
value. Since θ(V ) represents the macroscopic angle far
from the solid, it was obtained by extrapolating cylindri-
cal fits to the interface for y > 6σ down to y = 0.
Figure 2(a) shows θ(V ) for a wide range of parameters.

In each case, the results follow Eq. 1 at low V and then
saturate. Since c and γ were obtained from independent
simulations, there are no adjustable parameters. These
results provide strong evidence that the YLE remains
valid down to nanometer scales.
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FIG. 2. (a) Change in contact angle θ with dimensionless
voltage (points) and prediction of Eq. 1 (lines). Upper re-
sults (green) are for θ0 = 114o and lower are for θ0 = 138o.
Squares and triangles are for chains with 8 and 4 beads, re-
spectively. For most data lB = 12.32σ. Blue triangles and
black squares show results for lB = 4.0σ (stronger screen-
ing) and lB = 96.08σ (weaker screening), respectively. (b)
Same results plotted against fel,x and the predictions of Eq.
2 (lines).

The voltage at saturation Vsat varies dramatically, in-
creasing with increasing chain length and decreasing lB
(weaker Coulomb interactions). These results are clearly
inconsistent with the electrocapillary model for satura-
tion. First the interfacial tensions (and hence θ0 in Fig.
2) are nearly independent of chain length. Moreover,
since the solid is rigid, both γls and γvs can be viewed as
much larger than γ so the electrocapillary model predicts
no saturation. Direct evaluation of the local interfacial
tensions shows little variation with V , as concluded from
recent experiments [18]. Finally, the saturation angle is
independent of lB in the electrocapillary model.

Direct observation of molecular configurations in our
simulations shows that saturation is associated with indi-
vidual charged molecules being pulled from the drop by
large local electric fields ~E. This lowers the electrostatic
energy in much the same way as spreading of the entire
drop. The escaped molecules screen ~E near the contact
line, limiting the number of molecules that escape.

Figure 3 shows the peak electric force on molecules at
the interface, eEx,i, for a range of systems. The peak
was always in the lowest layer of the fluid. For all sys-
tems, eEx,i rises linearly at small V and then saturates.
The linear rise depends on the factors that determine
θ(V ) (D, c, ǫ and γ), but is independent of chain length.
In contrast, for these and other simulations parameters,
values of eEx,i for a given chain length saturate at the
same force. Each time V is increased beyond saturation,
the local field starts to increase. However, the larger
force pulls more molecules from the drop, bringing eEx,i

back towards the saturation value. Small fluctuations are
present in eEx,i because of the small size of the drop and
the discreteness of charges.

Increasing lB (stronger Coulomb interactions), makes
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FIG. 3. Variation of the electric force at the interface, eEx,i,
with V for θ0 = 138o. Squares and triangles are for chains
with 8 and 4 beads, respectively. Closed and open symbols
are for lB = 12.32σ and lB = 4.0σ, respectively.

eEx,i rise more rapidly with V and lowers Vsat. Increas-
ing lB also increases the volume where the field is large,
but this increase in volume does not directly affect the
value of eEx,i at saturation. The value of Vsat depends
only weakly on θ0 which has a small effect on the peak
field. Increasing chain length increases the energy bar-
rier for removing molecules and thus both eEx,i and Vsat.
Both the force and Vsat decreased with increasing T .

Other authors have suggested different ways that
changes in charge distribution could lead to saturation.
One proposed mechanism is similar to ours, but in-
volves ejection of charged droplets rather than individual
molecules [7]. Another finds an instability to radial de-
formations [13]. Saturation in both models depends on
surface tension, and thus would not predict the variation
with chain length observed here. Verheijen and Prins [8]
considered a model where dielectric breakdown led to a
layer of bound charge at some distance below the fluid.
This reduces the force driving a decrease in contact angle
by a constant amount rather than causing saturation at
a constant value. Note that this type of charge trapping
does not happen in our simulations and that there is also
no charge transport through the dielectric as assumed in
Ref. [11]. Finally, Ref. [14] finds that the impedance of a
counterelectrode can produce saturation at high frequen-
cies, but our simulations are for dc and have no electrode.

Further insight into the mechanisms of electrowetting
and the origin of saturation is provided by extending the
electromechanical concept of local force balance [20, 21]
down to nanometer scales. The finite width of the inter-
face and the screening length cannot be ignored, but one
can consider force balance on a volume of width 2R (Fig.
1(f)) enclosing the contact line. The only net forces are
the integrated electrostatic force per unit length fel,x on
the internal charge density and the capillary forces from
the interfaces leaving the volume. As long as 2R > ξ, the
integrated capillary force can be represented by the in-
terfacial tension directed along the tangent direction[30].
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Force balance along the solid surface requires:

γvs − γls − γ cos(θR) + fel,x = 0, (2)

where θR is the angle of the drop at the edge of the
volume. Note that θR = θ0 if fel,x = 0. From direct
measurements we found the interfacial tensions change
little with V , so equilibrium values can be used in Eq. 2.
In our simulations, using R = 4σ includes the entire

electrostatic force [32]. Eq. 2 then gives θR ∼ θ(V ),
with small corrections from the curvature of the drop,
and the associated change in θ with height. Figure 2(b)
shows that measured values of fel,x and θ(V ) are consis-
tent with Eq. 2 even after saturation has occurred. This
is not surprising, since forces must balance in a static sys-
tem. Escaping charge decreases dfel,x/dV , and thus the
rate of increase in cos θ(V ), but Eq. 2 remains valid. In
contrast, the YLE makes assumptions about the integrity
of the drop that break down after saturation. Equation
2 only reduces to the YLE if the fringe fields around
the drop edges do not change with drop width [6]. In
this case the change in energy with the position of the
drop edge comes from the change in electrostatic energy
stored in the central region of the dielectric [6, 8, 21] and
fel,x = cV 2/2. When the charge distribution at the edges
changes, the YLE breaks down.
If R is decreased from 4σ to 0, fel,x → 0 and Eq.

2 implies θR must approach θ0. This trend is clearly
evident in Fig. 1(d-f), although θR remains slightly below
θ0. This is an atomistic effect reflecting a breakdown
of the assumption that R is larger than the interfacial
width.
Atomistic effects also change θ at larger scales. Buehrle

et al. [19] assumed perfect conductivity so ~E is perfectly
screened, charge is confined to an infinitely sharp drop
surface, and D is the only length scale. Then numerical
solutions showed θ approached θ0 at R < 0.1D. The in-
sets in Fig. 1(e,f) show clearly that the charge extends
throughout the contact line region. The fringing electric
fields penetrate over a comparable distance (∼ 4σ) and
Eq. 2 implies that θ changes over this screening scale.
The YLE will fail when the entire droplet becomes com-
parable to this screening scale or ξ. Even for larger drops
the screening length plays an important role by cutting
off the divergence in electric field that is predicted by
continuum theory [6].
In summary, our simulations of EWOD show that

nanoscale drops exhibit the same behavior found in
macroscopic experiments. The contact angle follows the
continuum YLE at low voltages and saturates at high
V . A generalization of the electromechanical view of
EWOD to nanoscales leads to a force balance equation for
θ that remains valid even after saturation. The analysis
also shows that the contact angle must approach θ0 near
the solid. This conclusion is similar to mm scale studies
[19, 21] where D is the only length scale. In nanoscale
drops, atomistic effects cause the change in angle to be

spread over scales that are comparable to the interface
width and screening length.

The source of saturation is difficult to determine in
experiments, but is clearly caused by molecules being
pulled from the drop in our simulations. Saturation oc-
curs when the peak electric force near the edge of the
drop exceeds the molecular binding force. Increasing lB
(stronger Coulomb interactions), increases the peak force
and promotes saturation. Increasing binding by increas-
ing chain length or lowering temperature delays satura-
tion.

This mechanism may explain the asymmetry in posi-
tive and negative values of Vsat observed in some experi-
ments, since anions and cations will in general be bound
with different strengths. There is some evidence [33] that
larger molecules that interact over a greater surface area
saturate at higher V , much like our longer chains. It is
also interesting to note that larger values of cos(θ) can be
reached using ac voltages [6, 12], even though deviations
from the YLE occur at comparable voltages. If the polar-
ity changes fast enough, neither ion species will have time
to escape far from the drop, reducing the screening from
escaped molecules. It will be interesting to see if using
fluids with higher molecular binding can delay saturation
in experiments and improve EWOD performance.
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