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Abstract

Most of the work to date on plasma blobs found in the edge region of magnetic confinement

devices is limited to 2D theory and simulations which ignore the variation of blob parameters

along the magnetic field line. However, if the 2D convective rate of blobs is on the order of the

growth rate of unstable drift waves, then drift wave turbulence can drastically alter the dynamics of

blobs from that predicted by 2D theory. The density gradients in the drift plane that characterize

the blob are mostly depleted during the nonlinear stage of drift waves resulting in a much more

diffuse blob with a greatly reduced radial velocity. Sheath connected plasma blobs driven by

effective gravity forces are considered in this paper and it is found that the effects of resistive drift

waves occur at earlier stages in the 2D motion for smaller blobs and in systems with a smaller

effective gravity force. These conclusions are supported numerically by a direct comparison of 2D

and 3D seeded blob simulations for magnetic field curvature and gradient driven blobs.
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Coherent structures having isolated density bumps in the drift plane and extended along

the magnetic field, known as plasma blobs, are formed as a result of turbulent fluctuations

in magnetic confinement devices and can often dominate the cross field transport in the edge

region between the confined plasma and material surfaces. Plasma blobs are of considerable

interest for a better understanding of edge transport and plasma exhaust in future toroidal

fusion devices and have drawn significant attention from the physics community in recent

years [1–15]. A thorough review of the current theoretial and experimental understanding

of plasma blobs is given in [13].

The basic physics of blobs, shown in Fig. 1, is that charge polarizing forces combined with

a vertical density gradient result in an electric field that drives the blob radially outward due

to E×B convection [1]. The electric potential φ is limited by charge mitigation through the

parallel dynamics which for sheath connected blobs is the flow of current into the sheaths.

In this paper, we consider sheath connected plasma blobs driven by effective gravity forces

that can be described by a local slab geometry with x the effective radial coordinate, y the

effective poloidal coordinate, and z follows the magnetic field B. In toroidal devices, this

model represents blobs in the outer midplane where the toroidal magnetic field is typically

much larger than the poloidal field. A discussion of the limitations of this model and a

review of other blob models can be found in [10, 13].

FIG. 1. Basic physics of plasma blobs driven by charge polarizing forces.

Most published work has only considered 2D dynamics of blobs by using different closure

schemes to model the parallel dynamics and thereby ignores the variation of blob parameters

along the magnetic field line [1, 3, 5, 7, 9, 10, 12, 13]. However, this approach is only valid on

time scales short compared to the time scale of 3D instabilities, such as drift waves, which

can be comparable to the time scale of blob motion for a wide range of parameters typical

for current and future plasma devices.

Whether or not drift wave could be expected to affect the dynamics of plasma blobs is
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estimated in this work by comparing the maximum growth rate from a local linear analysis

of the governing equations with the blob convective rate from 2D theory. The important

aspects of this expression are supported by a direct comparison of 2D and 3D seeded blob

simulations using the code BOUT++ [16, 17].

The basic dynamics of blobs can be captured by solving the plasma vorticity and density

equations for cold ions, isothermal electrons, and neglecting parallel ion dynamics. Under

these assumptions, the following equations governing blobs driven by effective gravity forces

are obtained from the conservation of charge and quasi-neutrality in a strongly magnetized

plasma [10, 13]:
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where ρs = cs/Ωi, cs =
√

Te/Mi, J‖ is the current density along the magnetic field, d
dt

=

∂
∂t
+VE·∇, VE = cB×∇φ/B2, g is the effective single particle gravitational acceleration [10],

and all other parameters are defined conventionally with respect to cgs units. Some common

examples of g are: magnetic field curvature and gradient forces gκ = 2c2s/Rc in the outer

midplane of tokamaks with radius of curvature Rc, the effective centrifugal force gcent = V 2

θ /a

in linear plasma devices of radius a rotating with velocity Vθ [18], and the neutral wind force

gnw = vnνin where vn is the neutral velocity and νin is the ion-neutral collision frequency

[19]. In terms of ion dynamics, the RHS of Eq. 2 represents the contribution of the ion

polarization drift and is typically neglected in 2D theory since it is lower order than the

E×B advection. However, this term has the important effect of making the drift wave

instability well behaved in k-space and must be retained for 3D simulations.

The parallel current density is governed by Ohm’s law: J‖ = σ‖Te/e∇‖(ln(n) − eφ/Te),

where σ‖ = ne2τei/(0.51me) is the plasma conductivity and τei = 0.3m2

ev
3/2
e /(ne4lnΛ) is the

electron-ion collision time with lnΛ ≈ 10 and ve =
√

Te/me. For sheath connected blobs, J‖

from Ohm’s law is matched to the current density from linear sheath theory at the parallel

boundaries z = ±L/2: J±sh = ±σ±shφ±sh/(L/2), where σ±sh = csn±she
2L/(2Te) is the

effective sheath conductivity and n±sh (φ±sh) is the density (potential) at the upper(+) and

lower(-) sheaths. φ±sh is taken with respect to the floating potential φf ≈ 3Te/e [10].

Plasma blobs are typically represented analytically by a Gaussian density profile in the

drift plane with an amplitude on the order of or larger than the background density which
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is usually taken as uniform. An exact linear analysis of the governing equations with this

density profile is difficult since the effective gravity force combined with the poloidal density

gradient does not satisfy a steady state solution of the governing equations. However, the

dominant unstable modes will be shown to occur at k⊥ρs ≈ 1; whereas blobs are typically

an order of magnitude larger than ρs. Thus, a standard local linear analysis of the governing

equations by assuming an exponentially decaying background density with a characteristic

scale length δ in the x-direction to be representative of the blob radius is sufficient to

understand the effect of drift waves on blob dynamics. Perturbations of the form (ñ, φ̃) =

(n̂(z), φ̂(z))exp(ikyy − iωt) that satisfy the sheath boundary conditions are assumed. The

sheath boundary conditions were found to be insignificant for parallel mode number m 6= 0

in the limit k‖ >>
√

me/Mi/λe where λe = τeive/0.51 the electron mean free path and

k‖ = πm/L. The linear dispersion relation in this limit is found to be

ω2 + ω2

g − ω
gχ

cs
= −iωshω, for m = 0 (3)

ω2 + ω2

g − ω
gχ

cs
= −iω‖ [ω − ωD] , for m = 1, 2, ... (4)

where χ = ρsky, ωg =
√

g/δ is the flute mode frequency, ωD = csχ/(δ(1 + χ2)) is the

drift frequency, ωsh = νsh/χ
2, νsh = 2cs/L is the characteristic rate for parallel losses to

the sheaths, ω‖ = ν‖(1 + χ2)/χ2, and ν‖ = veλek
2

‖ is the characteristic rate for electrons to

diffuse a distance on the order of a parallel wavelength. Even values of m correspond to

even modes and odd values of m correspond to odd modes. The time scale for a blob to

move a distance on the order of the blob size from 2D theory is ω−1

g [10]. Eq. 3 is the 2D

sheath mode and the growth rate is never larger than ωg. Seeking growth rates from Eq. 4

large compared to ωg, the maximum growth rate is found to be

γmax ≈ 0.15cs√
gδ

ωg. (5)

This growth rate occurs at parallel and perpendicular wavelengths corresponding to ωD ≈ ω‖

and χ ≈ 1 and suggests that blob transport may deviate from 2D theory due to drift waves

when 0.15cs/
√
gδ & 1.

To numerically investigate the effect of drift waves on blob dynamics and make com-

parisons with 2D theory we first introduce the following non-dimensional transformation:

(x, y) → δ(x, y), z → (L/2)z, t → ω−1

g t, φ →
√

gδ3/(csρs)2Teφ/e = φ̃φ, n → ñn, and

J‖ → e2csñφ̃/TeJ‖. The dimensionless form of Eq. 1 and Eq. 2 along with parallel Ohm’s
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law are

n
d

dt
∇2

⊥φ = ∆
5

2∇‖J‖ −
∂n

∂y
, (6)

d

dt
n =

ρ√
α∆

(

∆
5

2∇‖J‖ −
∂n

∂y

)

, (7)
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, (8)

where ρ ≡ gρs/c
2

s, σ ≡ nshσ‖/σsh = nλe

√

Mi/me/(L/2), α ≡ gδ∗/c
2

s, ∆ ≡ δ/δ∗, and

δ∗ ≡ ρs(gL
2/(4c2sρs))

1/5 is the fundamental size for coherently propagating blobs from 2D

theory [7, 10]. The sheath boundary conditions in the dimensionless representation are

J‖(z = ±1) = ±n±φ±.

The evolution of the parallel gradients are set by σ. If σ/nsh >> 1 (which physically

means that the resistance to the charge flow from the sheath potential is much stronger

than the collisional resistance in the bulk of the plasma) and the density is initially uniform

along B, then the potential drop between the sheaths can be neglected. This is the 2D limit

and the divergence of J‖ can be shown to reduce to ∇‖J‖ = nφ [1, 10]. Furthermore, since

the RHS of Eq. 7 is lower order than the E×B advection, it is seen that ∆ is the main

dimensionless parameter governing the 2D dynamics: blobs with ∆ < 1 are subject to the

Kelvin-Helmolholtz instability, blobs with ∆ > 1 have a convective time scale longer than

ω−1

g by a factor of ∆5/2 and break apart via the interchange instability from modes smaller

than the blob, and the interchange and Kelvin-Helmholtz modes balance each other when

∆ ∼ 1 and the blob can propagate relatively large radial distances as a coherent structure

[3, 7, 10, 20].

To demonstrate the effect of drift waves on blob dynamics we reduce our attention to

curvature and gradient driven blobs (g = 2c2s/Rc) and make direct comparisons of 2D and 3D

simulation results from solving Eqs. 6-8 for the evolution of seeded blobs with BOUT++.

The 2D operator ∇‖J‖ = nφ is used for the 2D simulations. Contours representing the

blob density in the drift plane are presented with the 2D contours from the 3D simulations

representing the density averaged along B. In all simulations, the background density n0

is uniform and the blob density nB is seeded on top of this background with twice the

amplitude of the background, a constant profile along B, and a Gaussian profile in the drift

plane with Gaussian width δ. The color code used in the contour plots is with respect to

the background plasma density n0. L = 10Rc was used in all simulations since the parallel
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scale length in tokamaks is typically L ≈ qπRc with safety factor q ≈ 3.

Assuming the blob density is initially homogeneous along B may not always be a valid

assumption for blobs in the scrape off layer of tokamaks owing to the strong ballooning

characteristic of plasma turbulence [9]. However, this is what is assumed in 2D theory

which we are attempting to make comparisons with. It is important to mention that the

onset of unstable drift waves is delayed in our simulations due to the oversimplification of

the initially flat density profile along B. The perturbations are not seeded, rather they are

allowed to develop naturally during the blob propagation. Furthermore, the initial symmetry

along the field line means that only even parallel modes will occur.

γmax/ωg scales with
√

Rc/δ for curvature and gradient driven blobs and thus only depends

on the size of the blob and the radius of curvature of the system. To see the effects of drift

waves on different size blobs we assume parameters typical of the edge region for current

tokamaks: Te = 20 eV, B = 3 T, n0 = 3 × 1012 cm−3, Rc = 150 cm, and A = 2 for the

atomic number of deuterium. The results of 2D and 3D simulations for ∆ = 1 are shown in

Fig. 2. The maximum normalized growth rate for these parameters is γmax/ωg ≈ 2.4. The

2D blob (top) remains coherent while travelling several blob widths, as is expected from 2D

blob theory for ∆ = 1. The averaged density along the field line from the corresponding 3D

simulation (bottom) matches well with the 2D theory at early stages in the 2D convection,

but the onset of drift waves may be seen by looking at the individual slices along the field

line shown in Fig. 3. At later times the 3D simulation yields a blob that is much more

diffuse with a greatly reduced radial velocity in comparison to the 2D simulation. The mode

numbers in the region of γmax are m = 4, 6 which were also the dominant modes identified

in the simulation.

2D and 3D simulations for ∆ = 0.3 are shown in Fig. 4 with all other parameters the

same as was used in Fig. 2. Here we see the effects of drift waves at an earlier normalized

time than for ∆ = 1, in correspondence with Eq. 5 which gives a maximum normalized

growth rate γmax/ωg ≈ 4.5 and mode number m = 8. The dominant mode in the simulation

was identified as m = 8.

To demonstrate that drift waves affect blobs at relatively earlier stages in the 2D con-

vection in systems with a larger radius of curvature we choose edge parameters that may

be typical for future tokamaks such as ITER: Te = 50 eV, B = 4 T, n0 = 1013 cm−3, and

Rc = 800 cm. The results of the 2D simulation shown in Fig. 5 are practically identical to
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FIG. 2. Time slices of density contours from 2D simulation (top) and 3D simulation (bottom) for

∆ = 1, ρ = 2.87 × 10−4, σ = 32.3, and α = 3.68 × 10−3.

FIG. 3. 2D density contours from 3D simulation taken at different slices along the magnetic field

line corresponding to the averaged density contour shown at t=5.5 in Fig. 2.

those in Fig. 4, as expected from 2D theory, but the onset of drift waves is noticeable at an

earlier stage in the 3D simulation shown in Fig. 5 than it is in Fig. 4.

In summary, it is demonstrated that 2D blob theory holds well on time scales short

compared to the growth time of unstable drift waves, but the free energy source present in

the blob density gradient that drives the blob radially outward is quickly depleted during

the nonlinear stage of unstable drift waves. The importance of resistive drift waves on

blob dynamics is estimated by comparing the maximum linear growth rate from a standard

local analysis of the blob equations with the 2D convective rate. The standard local linear

analysis captures the dominant modes well since they occur for k⊥ρs ≈ 1; whereas the

fundamental blob size δ∗ is typically an order of magnitude larger than ρs. Furthermore, the

same parameter limit originally considered for the validity of 2D blob theory (σ‖ >> σsh)
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FIG. 4. Time slices of density contours from 2D simulation (top) and 3D simulation (bottom) for

∆ = 0.3, ρ = 2.87 × 10−4, σ = 32.3, and α = 3.68 × 10−3.
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FIG. 5. Time slices of density contours from 2D simulation (top) and 3D simulation (bottom) for

∆ = 0.3, ρ = 6.4E− 5, σ = 11.4, and α = 1.1× 10−3.

may also be used to ignore the effect of the sheath boundary conditions on the parallel modes

for m 6= 0. Interestingly, this parameter does not enter directly into the maximum growth

rate. However, it does enter indirectly by affecting what parallel mode number the maximum

growth rate will occur. This is determined by ω‖ ≈ ωD and in the limit as σ‖/σsh → ∞, the

parallel modes in the region of the maximum growth rate cannot be supported in a finite

system and 2D theory should be valid with respect to the drift wave instability. However, for

parameters typical of most linear and toroidal devices, the modes corresponding to ω‖ ≈ ωD

can be supported.

For magnetic field curvature and gradient driven blobs, Eq. (5) suggests that drift waves

could be important for all blobs with δ . Rc/100, which is typical for current and future
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tokamaks and should therefore be addressed in blob theory and modeling. The growth rate

is relatively larger for smaller blobs and this could explain why the detailed mushrooming

of small blobs described by 2D theory and seen in 2D simulations [7, 9, 10] is never actually

seen in experiments [13]. Also, the radial distance the blobs travel as a coherent structure

is less in systems with a smaller effective gravity force. This could be beneficial for limiting

particle and heat flux to the first wall for future tokamak reactors such as ITER.

Ignoring parallel ion dynamics in the density evolution is justified since csk‖ < ωg and

the time scales of the simulations presented are small compared to the parallel loss time

Lωg/(2cs). However, the use of parallel Ohm’s law is only valid in the collisional fluid limit

where λek‖ < 1 and this parameter is marginal for most current and future tokamak edge

parameters. Also, to treat electrons isothermally in the collisional limit requires ω < ν‖,

but the maximum growth rate was found to occur when ω ≈ ωD ∼ ν‖. Furthermore,

although the ions are typically much colder than the electrons in the edge of most small

scale experimental devices, it can be comparable to or even larger than Te in the edge

region of tokamaks [13]. In this situation, k−1

⊥ corresponding to the dominant unstable drift

wave modes become comparable to the ion gyro-radius. All of these limitations should be

considered when interpreting the results of this paper and they suggest that kinetic effects

may play an important role on blob dynamics.

Electrostatic drift wave turbulence is known to saturate to a self-organized state under

certain circumstances [21]. It was found in this study that, for certain parameter sets, the

blob potential does saturate to a self-organized state resulting in a diffuse blob rotating

about a central axis in the drift plane. However, for other parameters, this self-organized

state was not found. A better understanding of the non-linear saturated state of plasma

blobs that undergo drift wave turbulence and drawing connections with known theories on

self-organization of electrostatic potential is a topic for future research.
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