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The scaling and statistical properties of three-dimensional (3D) compressible turbulence are stud-
ied using high-resolution numerical simulations and a heuristic model. The two-point statistics of
solenoidal component of the velocity field are found to be no significantly different from those of
incompressible turbulence, while the scaling exponents of the velocity structure function for the
compressive component become saturated at high orders. Both the simulated flow and the heuristic
model reveal the presence of a power-law tail in the probability density function (PDF) of negative
velocity divergence (high compression regime). The power-law exponent is different from that in
Burgers turbulence, and this difference is shown to have a major contribution from the pressure
effect which is absent in the Burgers turbulence.

PACS numbers: 47.27.E-, 47.40.ki, 47.53.+n

Compressible three-dimensional (3D) fluid turbulence
is of great importance to a large number of industrial
applications and natural phenomena, including high-
temperature reactive flows, transonic and hypersonic air-
crafts, inter-planet space exploration, and star-forming
clouds in galaxies [1]. An accurate description (e.g., SGS
modeling [2]) of small-scale compressible turbulence is de-
sired when modeling complex compressible turbulence.
In this paper, we study the effects of compressibility
and shock discontinuities on the statistics of fluid tur-
bulence, with a specific attention on the similarity and
difference between 3D compressible turbulence and one-
dimensional Burgers turbulence.

Since it is difficult to analyze 3D compressible turbu-
lence, Burgers [3] first systematically studied a nonlinear
model of fluid turbulence, i.e., the one-dimensional Burg-
ers equation. Since then, the one-dimensional Burgers
turbulence has frequently been investigated theoretically
and numerically [4–13]. According to multifractal the-
ory [4], isolated shocks connected by smooth ramps lead
to bifractal scaling exponents of velocity structure func-
tion in the Burgers turbulence. Mitra et al. [5] performed
simulation of one-dimensional Burgers turbulence with
up to 220 mesh points to study multiscaling of velocity
structure functions. They found that scaling exponents
asymptotically saturates to one with increasing orders.
Much effort has also been made to exploit the asymptotic
behavior at the tail of PDF of negative velocity derivative
in Burgers turbulence [7–13]. E et al. [10] predicted that
the large negative velocity gradients stem mainly from
preshocks, leading to the −7/2 power-law tail in the PDF
of negative velocity gradients (provided that preshocks
do not cluster). Bec [11] verified this result using a novel
particle and shock tracking numerical method. Boldyrev
et al. [12] carried out simulations of random forced Burg-
ers turbulence using a standard shock capturing scheme.

They obtained a power-law exponent of about −3.4, very
close to the theoretical value of −3.5.

Compared to incompressible turbulence, 3D compress-
ible turbulence is more complex due to nonlinear inter-
actions between solenoidal and compressive modes of ve-
locity fluctuations, and furthermore couplings between
velocity field and pressure field [14]. Besides the vortex-
filament induced intermittency observed in the incom-
pressible turbulence, shock waves in the compressible
turbulence add an intermittent dissipation mechanism of
different topological structures [15]. Schmidt et al. [16]
studied two-point velocity statistics of compressible tur-
bulence at rms Mach number of 5.5 by numerical simu-
lations of Euler equations. A universal scaling has been
recovered by reformulation of the refined similarity hy-
pothesis in terms of the mass-weighted velocity ρ1/3u.
They also reported that the most intermittent dissipa-
tive structures were shocks, due to extreme compressibil-
ity of the flow field. Galtier and Banerjee [17] derived an
exact relation for correlation functions in compressible
isothermal turbulence that mimics the Kolmogorov 4/5
law in the incompressible isotropic turbulence. Conse-
quently, they theoretically revealed the effect of dilation
and compression on the local energy transfer. By dimen-
sional arguments, they further obtained a k−5/3 spectrum
of density-weighted velocity ρ1/3u.

Here a forced compressible turbulence is simulated
in a cubic box with periodic conditions at 10243 grid-
resolution, using a novel hybrid approach described
in [18] (also see Supplementary Material). A total of
20 flow fields at the statistical stationary stage span-
ning 2.68 ≤ t/Te ≤ 4.63 are extracted to analyze the
flow statistics, where t is time and Te is the large eddy
turnover time defined by Te =

√
3L/u′, where L is the in-

tegral length scale and u′ is the root-mean-square (r.m.s.)
velocity magnitude. The turbulent Mach number is
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FIG. 1: Normalized probability density functions of ∆us.
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FIG. 2: Normalized probability density functions of ∆uc. In-
set: log-log plot of the same PDF for the negative ∆uc at the
one-grid-length separation.

Mt = u′/〈c〉 = 1.03 and Taylor microscale Reynolds
number is Rλ = 254, where 〈c〉 is the average sound
speed. The r.m.s. velocity divergence is found to be
θ′ = 0.35ω′, where ω′ is the r.m.s. vorticity magnitude.
It is also found (not shown in the paper) that power
spectra for velocity u, density-weighted velocity ρ1/3u
and ρ1/2u almost overlap, indicating a minor effect of
density fluctuations on the velocity spectrum.
In order to reveal the underlying physics in the com-

pressible turbulence, we employ the Helmholtz decompo-
sition [14], namely, the fluid velocity u is decomposed into
a solenoidal component us and a compressive component
u
c: u = u

s+u
c, where ∇·us = 0 and ∇×u

c = 0. In our
simulated flow, the ratio of r.m.s. fluctuations, uc′/us′, is
found to be 0.22, comparable to 0.18 reported in Porter
et al. [19] at a similar turbulent Mach number.

Fig. 1 shows the normalized PDFs of the longitudi-
nal increments, ∆us(r) ≡ ∆u

s(r) · r/r, of the solenoidal
velocity component at different separations, where r is
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FIG. 3: Normalized probability density functions of ∆p. Thin
dash-dotted line is the corresponding PDF at the one-grid-
length separation for incompressible turbulence (ITurb) at the
same Taylor Reynolds number. Inset: log-log plot of the PDF
for positive ∆p in compressible turbulence at the one-grid-
length separation.

the separation vector and r = |r|. The PDFs ex-
hibit stretched exponential tails at small spatial sepa-
rations and approach to Gaussian as the separation in-
creases. These trends are very similar to those found
in incompressible turbulence [20]. Fig. 2 shows the nor-
malized PDFs of the longitudinal increments, ∆uc(r) ≡
∆u

c(r)·r/r, of the compressive velocity component. The
shape of PDFs is highly skewed at small separations and
always has longer tail than Gaussian for all separations.
In addition, at the one-grid-length separation, the PDF
has a power-law tail with an exponent of −2.5 on the
left side. We note that due to the power law behavior
of the PDF tail, when the viscosity asymptotically ap-
proaches zero, special care is required since the variance
of velocity increment may become unbounded. Similar
results have been reported for the Burgers turbulence.
In the random-force driven Burgers turbulence, the PDFs
of velocity increments have an algebraic tail at left side,
leading to strong intermittency and bifractality of scaling
exponents [8].

We plot the normalized PDFs of the pressure incre-
ments ∆p in Fig. 3. The shapes of these PDFs are nearly
symmetric and have longer tails at small spatial separa-
tions than those in the incompressible turbulence at the
same Taylor Reynolds number (also see [21]). The pres-
sure changes drastically in the high compression regime,
leading to intensive pressure increments at small sepa-
rations. Power-law tails are also found in the pressure-
increment PDF at the one-grid-length separation, with
an power-law exponent of −3.

The scaling exponents for the longitudinal structure
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ζLc,n as a function of n. The separation r is normalized by

Kolmogorov length scale η =
[

〈ν〉3/ǫ
]1/4

, where ν is the kine-
matic viscosity and ǫ is the kinetic energy dissipation rate.

functions in the inertial subrange are defined as

SL
s,n(r) ≡

〈
∣

∣

∣
∆us(r)

∣

∣

∣

n〉

∼ rζ
L
s,n , (1)

SL
c,n(r) ≡

〈
∣

∣

∣
∆uc(r)

∣

∣

∣

n〉

∼ rζ
L
c,n , (2)

where ζLs,n and ζLc,n are the scaling exponents for the two
velocity components, respectively. Our results show that
ζLs,n agrees well with those from the incompressible turbu-
lence [22, 23]. This implies that at Mt ∼ 1, the two-point
statistics of solenoidal velocity component are insensitive
to the presence of shocks. In addition, similar to results
in [19, 24], we find that the scaling exponents of the full
velocity u are also the same as those in the incompress-
ible turbulence. However, the scaling exponents of the
the compressive velocity component, shown in the insert
of Fig. 4, is drastically different. A saturation of ζLc,n
is observed for n ≥ 5, and the saturated value is esti-
mated to be ζLc,∞ ≈ 0.7. The compensated longitudinal
structure functions at orders 5 and 6 are shown in Fig. 4,
where the separation is normalized by Kolmogorov length
η. According to the multi-fractal theory, the saturation
of exponents is caused by the domination of frontlike
structures [24]. Benzi et al. [24] observed that density
field displays frontlike structures, leading to saturation
of scaling exponents for density structure functions in
a weakly compressible turbulence at rms Mach number
0.3. However, for the velocity field, they did not find
any difference between weakly compressible turbulence
and incompressible turbulence. On the other hand, due
to relatively higher turbulent Mach number in our simu-
lated flow, shocks produce a significant number of front-
like structures in the compressive velocity field, causing
saturation of scaling exponents ζLc,n. Furthermore, sub-
stantial uncertainties in the exponents at high orders are
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FIG. 5: Probability density function of velocity divergence.

associated with large temporal fluctuations, which as-
cribe to instability of intermittency structures [25].
The PDF of velocity divergence (Fig. 5) exhibits a

power-law tail for large negative divergence and an super-
exponential tail for large positive divergence, both quali-
tatively similar to the PDF of velocity derivative in Burg-
ers turbulence [13]. In Burgers turbulence with infinites-
imal viscosity, the large negative velocity gradients stem
mainly from preshocks, leading to the power-law tail in
the PDF of negative velocity gradients [10]. In the com-
pressible turbulence, through studying the contours of
velocity divergence (not shown here), we have identified
that the power-law regime of velocity divergence have a
major contribution from preshocks and weak shocklets
rather than strong shock waves. Otherwise, the power-
law exponent for the PDF of velocity divergence is −2.5,
the same as that for the PDF of the longitudinal in-
crements of compressive velocity component at the one-
grid-length separation, but qualitatively different from
the power-law exponent (−3.5) for the PDF of velocity
gradient in one-dimensional Burgers turbulence. To un-
derstand this difference, we write down the equation of
the velocity derivative in Burgers turbulence [9]

∂ξ

∂t
+ u

∂ξ

∂x
= −ξ2 + ν

∂2ξ

∂x2
+

∂f

∂x
, (3)

where u(x, t) is velocity and ξ(x, t) is velocity gradient.
The forcing f(x, t) is used to maintain the Burgers tur-
bulence to be statistically stationary. In contrast, the
governing equation for velocity divergence in 3D Navier-
Stokes flow is:

∂θ

∂t
+uj

∂θ

∂xj
= −∂uj

∂xi

∂ui

∂xj
− 1

γM2

∂

∂xi

(

1

ρ

∂p

∂xi

)

+
4ν0
3Re

∂2θ

∂xi
2
.

(4)
To simplify the discussions, we have neglected the effect
of density fluctuations on the viscous term. It is seen
that there are some similarities between the term

∂uj

∂xi

∂ui

∂xj
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in Eq. (4) and ξ2 in Eq. (3), the former causing strong
skewness of PDF for velocity divergence provided turbu-
lent Mach number is larger than 0.3 [26].
Below, we demonstrate how the pressure term alters

the power-law exponent of the PDF of velocity diver-
gence in high compression regime. Following the similar
procedure provided by Gotoh and Kraichnan [6], we can
derive the Liouville equation for the PDF of velocity di-
vergence P (θ) as follows (see Supplementary Material):

∂P

∂t
− ∂(θ2P )

∂θ
− θP +D = F, (5)

where the dissipation term is

D(θ) =
4ν0
3Re

∂

∂θ

[〈

∂2θ

∂xi
2

∣

∣

∣
θ

〉

P

]

(6)

and the forcing term including effects of pressure and
anisotropic straining is

F =
∂

∂θ

[〈

1

γM2

∂

∂xi

(

1

ρ

∂p

∂xi

)

+

(

∂uj

∂xi

∂ui

∂xj
− θ2

)

∣

∣

∣
θ

〉

P

]

.

(7)
This equation is written formally the same as the PDF
equation of velocity derivative in Burgers turbulence, but
with different dissipation term and forcing term [13]. It
has been argued previously [7–13] that Burgers turbu-
lence has a power-law tail in the PDF of ξ for high com-
pression regime. If Burgers turbulence is driven by large
scale white-in-time random forcing, this tail is believed
to be universal with an exponent −3.5 in the limit of van-
ishing viscosity. Other exponents are possible if Burger
turbulence is driven by forcing with prescribed power-law
spectra [8].
In Fig. 6, we plot the average normalized straining

1

θ′2

∂uj

∂xi

∂ui

∂xj
conditioned on the velocity divergence, as a

function of velocity divergence. For the compression
regime (i.e., θ < 0), we find that the straining term can

be well approximated by θ2

θ′2 , implying that the effect of
stretching-tilting dynamics on the PDF of velocity diver-
gence is small. In addition, its compressive component
1

θ′2

∂uc
j

∂xi

∂uc
i

∂xj
dominates the overall straining term. These

interesting approximations are consistent with the nu-
merical simulations that intensive velocity gradients are
dominated by variations in one spatial direction during
compression in the shock waves [14, 27]. Therefore, the
solenoidal velocity component has very limited contri-
bution to the PDF equation of velocity divergence in
the compression regime. In contrast, in the expansion
regime (i.e., θ > 0), the straining term is no longer close
to square of divergence. Based on dimensional analy-

sis, the anisotropic straining term ( 1

θ′2

∂uj

∂xi

∂ui

∂xj
−

(

θ
θ′

)2
)

can be represented by square of divergence multiplying
by a non-dimensional constant. Fig. 6 shows that this
non-dimensional constant is around −0.8 in the expan-
sion regime instead of almost zero in the compression
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〈
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∂uj
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∂xj

∣

∣

∣

θ
θ′

〉

(squares),
〈

1

θ′2
∂uc

j

∂xi

∂uc
i
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∣

∣

∣

θ
θ′

〉

(plus),
〈

1

θ′2
∂uj

∂xi

∂ui

∂xj
−

(

θ
θ′

)2
∣

∣

∣

θ
θ′

〉

(triangles),
〈

1

θ′2
4ν0
3Re

∂2θ
∂xi

2

∣

∣

∣

θ
θ′

〉

(diamonds) and
〈

1

θ′2
1

γM2

∂
∂xi

(

1

ρ
∂p
∂xi

) ∣

∣

∣

θ
θ′

〉

(circles). The lines represent α
(

θ
θ′

)2

+ β θ
θ′

with (α, β) =
(1.0, 0.0) (dashed line), (α, β) = (0.6, 0.0) (solid line), (α, β) =
(−0.8, 0.0) (dash-dotted line), (α, β) = (0.4, 0.5) (dash-dot-
dotted line) and (α, β) = (1.2, 5.3) (long dashed line).

regime. The conditional straining is always positive, im-
plying that the magnitude of the velocity divergence is
increased by the straining when θ < 0, but it is decreased
by the straining when θ > 0. However, the magnitude of
the conditional straining for θ > 0 is only about 1/5 the
values for θ < 0, indicating that the effect of straining
on the velocity divergence is substantially weaker in the
expansion regime. Therefore, the role of the straining
term in Eq. (4) is similar to that of ξ2 term in Eq. (3)
in the compression regime due to shock structures; but
in the expansion regime, it is weakened by relaxation of
multi-directional advection and by the solenoidal veloc-
ity dynamics, where the flow are dominated by vortex
structures.
We now focus our discussion on the PDF equation in

the strong compression regime where the power-law tail
appears. In Fig. 6, we show average values of viscous
term and pressure term conditioned on θ in the PDF
equation. As also shown in the figure, the anisotropic
staining effect is small compared with the other two
terms, and may be neglected. The viscous term is well

fitted by a parabola αν

(

θ
θ′

)2
+ βν

θ
θ′

with αν = 0.4 and
βν = 0.5. A similar procedure was suggested by Gotoh
et. al [9] based on an analysis of viscous term inside an
equilibrium single-shock in Burgers turbulence. Pressure
term can also be approximated by a parabola with coeffi-
cient αp = 1.2 and βp = 5.3. With these approximations,
we obtain the following solution at the stationary stage

P (θ) = C0θ
−1

[

θ +
(βν − βp)

1 + αp − αν

]

−1−
1

1+αp−αν

. (8)
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It follows that, for large negative θ, P (θ) ∝ θ−q with the
exponent being q = 2+ 1

1+αp−αν
. Using the fitting values

for αp and αν , we then obtain q = 2.56. This is very
close to the value of 2.5 shown in Fig. 5. An exponent of
−3 is obtained without considering the pressure term and
viscous term, which is consistent with the case of Burgers
turbulence [13]. The viscous term enlarges the exponent
as in Burgers turbulence [13]. The key difference here
is the modification of the power-law exponent from the
pressure term. We note that the role of the pressure
is opposite to that of the viscosity in determining this
exponent, and the effect of pressure predominates.
Finally, we emphasize that the viscosity is small but fi-

nite in our discussion on the PDF of velocity divergence.
Several issues require further investigations, including the
relative contributions of preshocks and weak shocklets to
the power-law tail of the PDF at higher Reynolds num-
bers, the asymptotic behavior of the power-law exponent
in the limit of vanishing viscosity, and the effect of Mach
number on the power-law behavior.
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