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Abstract

We present a comprehensive description of vector chromatography (VC) that includes deter-

ministic and stochastic transport in 1D-periodic free-energy landscapes, with both energetic and

entropic contributions, and shows that the two parameters governing the deflection angle are the

Péclet number and the partition ratio. We also investigate the dependence of the deflection angle

on the shape of the free-energy landscape by varying the width of the linear transitions in an oth-

erwise dichotomous potential. Finally, we present experimental results obtained in a microfluidic

system in which gravity drives the suspended particles and, in combination with a bottom surface

patterned with shallow rectangular grooves, creates a periodic landscape of (potential) energy bar-

riers. The experiments validate the model and demonstrate that a simple, passive microdevice can

lead to VC of colloidal particles based on both size and density. More generally, the role of gravity

can be effected or enhanced by other fields, e.g., electric, dielectrophoretic, magnetic, potentially

leading to a versatile technique.
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Micro and nanofluidic systems for chemical and biological separation have shown great

promise and opened the door for exciting new technologies. A number of separation systems

based on driving suspended particles through a periodic stationary phase, for example, take

advantage of the unprecedented control on the geometry and chemistry provided by avail-

able fabrication techniques. Driving suspended particles in one-dimensional (1D) periodic

devices has been shown to lead to separation in a number of systems, ranging from entropic

trap arrays [1] to ratchets based on asymmetric structures [2]. In addition, the 1D trans-

port of particles past periodic entropy barriers, and to a lesser extent energy barriers, has

received considerable attention and rigorous results are available for the effective mobility of

single particles [3–13]. Two-dimensional (2D) separation methods, in which different species

in a sample migrate in different directions, enabling their continuous fractionation and, in

general, providing greater selectivity than 1D techniques, have also been developed based on

periodic stationary media, and have been categorized as vector chromatography (VC) [14].

Notably, VC can be obtained in planar devices via a straightforward extension of the afor-

mentioned 1D methods by driving the particles at an oblique angle with respect to the

periodic direction, thus providing passive transport in the invariant direction. A representa-

tion of such systems is given in Fig. 1, which also illustrates the analogous case investigated

in recent experiments in which suspended particles are driven through force fields that are

periodic in one of the directions of the separation plane and invariant in the other [15–17].

Although a case-by-case analysis in the deterministic limit provided good agreement with

these experiments, a general description is lacking. In this letter, we present a comprehensive

description of planar VC in terms of the 1D-periodic free-energy of the system, including

energetic and entropic contributions, that captures the deterministic and Brownian limits.

This unified description highlights the key parameters governing the migration angle of dif-

ferent species and their relevance to the design and optimization of fractionation devices.

We also performed experiments in a microfluidic system in which gravity drives the particles

and also, in combination with a patterned bottom surface, creates a periodic landscape of

potential energy barriers. The experiments agree well with the theory, exhibit several of the

qualitative features predicted by the model, show the separation capability of the device,

and introduce a potentially versatile strategy to induce VC.

Consider the motion of non-interacting Brownian particles through a potential energy

landscape V (x, z) (periodic in x (periodic direction) and invariant in y (uniform direc-
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FIG. 1. Particle driven by a constant external force F in a fluidic device. The surface, periodic

in x and invariant in y, represents either the applied potential V (x, z) at a given height z, or the

topography of the bottom surface, both confining the particles in the z direction. The forcing angle

θF , the average velocityU , the migration angle θ, and the deflection angle ∆θ are shown.

tion), see Fig. 1), and driven by a constant external force F (oriented at an angle θF =

arctan(Fy/Fx)), with any vertical component conveniently incorporated into the potential

V . The asymptotic distribution of particles in a unit cell is given by the steady-state solution

of the Smoluchowski equation for the reduced probability density P∞(x) [18, 19],

0 = ∇ · J(x) = ∇ · (U(x)P∞(x)−D(x) · ∇P∞(x)) , (1)

where J(x) is the probability density flux, U(x) is the instantaneous particle velocity and

D(x) is the diffusion tensor. In the low Reynolds number limit the velocity of the particle is

a linear combination of the forces acting on it, U(x) = M(x) · (F−∇V (x)), where M(x) is

the mobility tensor, which locally satisfies the Stokes-Einstein relation D(x) = kBTM(x).

P∞(x) is periodic in x, satisfies the no-flux condition in z, and is normalized,
∫

τ P
∞(x)dV =

1, where τ is the volume of the unit cell. Given P∞(x) it is straightforward to compute

the components of the average velocity Ux,y =
∫

τ Jx,y dτ [18], and the migration angle

θ = arctan(U y/Ux), which is the relevant parameter in VC.

In planar microfluidic devices the particles are usually highly confined in the vertical di-

rection, either geometrically in narrow channels or due to particle-wall interaction potentials

with narrow secondary minima [7, 11, 13]. In this case, the ratio between the diffusive time

in the vertical direction and the transit time along a unit cell of the patterned surface, is

usually small and it is valid to assume fast equilibrium in the cross-section [13, 20]. This is
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known as the Fick-Jacobs (FJ) approximation [3, 21–23] and is analogous to other projection

methods that eliminate fast degrees of freedom [24–26]. It is then possible to write the prob-

ability distribution in terms of the marginal probability density, P(x), and the equilibrium

conditional distribution in the cross-section, ρ(z|x)eq,

P∞(x) ≈ P(x)ρ(z|x)eq = P(x)Q−1e−βV (x,z), (2)

where β = (kBT )
−1 and Q(x) =

∫

exp(−βV (x, z))dzdy is the local partition function. In

this approximation, the average velocity in the uniform direction is given by the average

mobility, that is U y =
(

∫ ℓx
0 〈Myy〉eq P(x)dx

)

Fy, where Myy is the hydrodynamic mobility

and, for any function f(x, z), 〈f〉eq =
∫

f(x, z)ρ(z|x)eqdzdy is the local equilibrium average

over the cross-section. Before we calculate the average velocity in the periodic direction, we

note that the total flux through any cross-section in the periodic direction, Jx =
∫ ∫

Jxdydz,

is constant in steady state and therefore Ux = ℓxJx. Then, integrating Eq. (1) over the

cross-section and using the FJ approximation we obtain

Jx = 〈Mxx〉eq

{

[Fx − F(x)]P − kBT
dP

dx

}

, (3)

where F(x) is the mean force due to the potential, and following Zwanzig’s approach to

the case without convection [3], we write it in terms of the local free-energy of the system,

A(x) = −kBT lnQ(x),

F(x) = −

〈

∂V

∂x

〉

eq

= −
∂A(x)

∂x
. (4)

It is clear from Eq. (3) that the total flux in the periodic direction, and therefore Ux,

have both diffusive and convective contributions. The first convective term shows that, as

expected, a macroscopic anisotropy in the mobilities, 〈Mxx〉eq 6= 〈Myy〉eq, could lead to a

non-zero deflection angle, ∆θ = θ − θF 6= 0. Furthermore, the dependence of 〈Mxx〉eq on

x can also result in ∆θ 6= 0, independent of the local isotropy of the mobility tensor, given

that the contribution of the diffusive flux to Ux (last term in Eq. (3)) would not vanish

in this case [13]. For simplicity, however, we shall assume that the mobility functions are

constant and equal, Mxx = Myy = M . In this case, we have U y = MFy and it is clear

that ∆θ 6= 0 ⇐⇒ Ux 6= MFx. Moreover, in this case the diffusive contribution to Ux

vanishes, and therefore only F(x) can contribute to a non-zero deflection angle. Solving

Eq.(3) [13, 24] we obtain,

tan θ=tan θF

[

Pe

1− e−Pe

∫ 1

0
dx̃ e−βA′(x̃)

∫ x̃+1

x̃
dξ eβA

′(ξ)
]

, (5)
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FIG. 2. Deflection angle as a function of the Péclet number. Solid lines correspond to the SW

potential with logK = β∆A = 1, 2, 3, 4 and 6. The dashed lines correspond to the LTD potential

with β∆A = 3, transition regions δ = 0.01, 0.1, 0.2, 0.3, 0.5, and ǫ1 = ǫ2 = 0.5 − δ. The arrow

traverses curves of increasing K for the SW potential and curves of decreasing δ for the LTD

potential. The evolution (a → b) of a purely entropic system upon a temperature increase is

shown.

where βA′(x̃) = βA(x̃)−Pex̃, and x̃ = x/ℓx. The Péclet number, Pe = βFxℓx, measures the

relative magnitude of convective to thermal transport and is one of the two dimensionless

parameters dictating the migration angle. Alternatively, one can use a characteristic value

of the mean force, such as its maximum value Fmax, and consider the normalized driving
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force f = Fx/Fmax as an independent parameter. However, we shall see below that Pe and

f are complementary for the description of a given system, in that one is the appropriate

parameter to consider when the other diverges. The second dimensionless number governing

the migration angle is the partition ratio K = exp(β∆A), where ∆A is the amplitude of

changes in the free-energy over a unit cell. The partition coefficient measures the spatial

variations in the equilibrium distribution of particles in a unit cell, which in the context of

transition-state theory, corresponds to an Arrhenius factor [27].

In order to investigate the role of Pe and K on the migration angle we consider a cosine

potential, Ã(x̃) = 1/2 cos 2πx̃, and a dichotomous potential with linear transitions (LTD

potential), given by regions of constant potential, Ã = 0 and Ã = 1, connected by linear

transitions of width δ (see inset in Fig. 3). The LTD potential in the limit δ = 0 corresponds

to a square wave (SW) potential. In all cases, the effect of the periodic potential is to

reduce Ux [28], resulting in positive deflection angles (here we consider θF = 45◦, thus

0◦ < ∆θ ≤ 45◦ –see Fig. 1–). In Fig. 2 we show the deflection angle as a function of

Pe for the different potentials. It is clear that the deflection angle decreases with Pe and

increases with K (arrow direction) independent of its entropic or energetic origin. Figure 2

also shows that for a given K and Pe, the smaller the transition region in the LTD potential

the higher the deflection angle, with ∆θ converging to the curve for the SW potential as

expected for δ → 0 (arrow direction). In Fig. 3 we plot the deflection angle as a function of

the normalized force and consider the effect of Brownian motion for the different potentials.

Specifically, we compare the deflection angle obtained at a finite partition ratio for the cosine

and LTD potentials with that in the deterministic limit (Pe → ∞ and finite f). Note that

Figs. 2 and 3 are complementary, in that they allow us to investigate independent limits, i.

e., the SW limit where the opposing potential force is much larger than the driving force

(f → 0 and finite Pe) and the deterministic limit (Pe → ∞ and finite f), respectively. In

all cases, the deflection angle decreases with f , analogous to the behavior observed in Fig. 2

for increasing Pe. Figure 3 also shows that Brownian motion allows the particles to cross

the potential barriers even when f ≤ 1, leading to ∆θ < 45◦ for all driving forces. This is in

contrast to the deterministic case, in which particles are locked to move along the uniform

direction and ∆θ = 45◦ for f ≤ 1. We also investigate the effect that the transition region

δ has on the deflection angle. In the deterministic limit, the deflection angle for the LTD

6



potential has the simple analytical expression [20],

tan θ

tan θF
=

[

1−2δ+
fδ

f−1
+

fδ

f+1

]

=

[

1+
2δ

f 2−1

]

, (6)

and it is clear that larger transition regions lead to larger deflection angles for any f > 1.

The reason is that as δ increases (at constant f), the particle is deflected for a longer time

as it crosses the potential barrier. Note the difference in the contributions to the transit

time coming from the regions with ±f , as shown by the corresponding terms in Eq. 6.

In the presence of Brownian motion we observe the same trend for large driving forces

f , as expected. On the other hand, as the driving force decreases and barrier hoping is

dominated by thermal motion, the behavior reverses and larger transition regions lead to

smaller deflection angles. This crossover between the deterministic and Brownian cases as

f decreases is consistent with the behavior observed as a function of Pe in Fig. 2. In fact,

the limits Pe ≪ 1 and f ≪ 1 coincide in the linear response regime, where the reduction

in mobility (and effective diffusivity) is given by (
∫

Qdx
∫

Q−1dx) [29]. In Fig. 4 we show

the effect of the partition ratio on the deflection angle for the LTD potential with a given δ.

Clearly, the deflection angle increases with the partition ratio, converging to an asymptotic

curve for K → ∞. This upper limit coincides with the deterministic limit for a purely

energetic potential of mean force [9]. In terms of separation devices, it becomes clear that in

order to obtain large deflection angles and high selectivity it is desirable to operate around

f <
∼ 1. The results presented in Figs. 2 and 4 also reveal the role of temperature in different

separation systems [5]. In entropic trapping, for example, ∆A ∝ 1/β and therefore K is

completely determined by the ratio between the available configurations in the slit and well

regions, independent of the temperature [8]. On the other hand, both Pe and f decrease

with temperature, which in Figs. 2 and 4 corresponds to the system moving along curves

of constant K towards higher discrimination angles, as shown. In contrast, in the purely

energetic case, both ∆A and f are independent of temperature, and thus increasing the

temperature reduces the partition ratio and the deflection angle, which corresponds to a

system moving down along vertical lines of constant f in Fig. 4, as shown.

We also performed experiments in a microfluidic system in which suspended particles

(silica particles of 4.32 µm and 2.14 µm diameter, and polystyrene particles of 4.31 µm

diameter) are driven over a periodic array of parallel grooves etched in glass. (The shallow

grooves are ∆H = 65 nm deep and 13 µm wide. ℓx = 20 µm.) The channel is high
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FIG. 3. Deflection angle as function of the normalized force in the stochastic and deterministic

regimes. The solid lines correspond to the cosine potential while the dashed lines correspond to

the LTD potential for different transition regions and ǫ1 = ǫ2 = 0.5 − δ. (curves with the same δ

have the same line style.) The inset shows schematics of the cosine and the LTD potentials.

enough to neglect confinement effects. Gravity induces periodic energy barriers due to

the presence of the grooves, and also drives the particles (the bottom surface is tilted at

an angle θt). The gravity-induced partition ratio for a particle of radius a is given by

K = exp (4/3πa3∆ρ g cos θt ∆H/kBT ) where ∆ρ is the buoyant density of the particles and

g is the acceleration due to gravity [13]. In a horizontal device the partition coefficient of

the 4.32 µm silica particles is at least two orders of magnitude larger than that for either

the smaller silica or the lighter polystyrene particles. Thus, at small tilt angles, the 4.32
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FIG. 4. Deflection angle as a function of the normalized force for the LTD potential for different

partition ratios. The arrow traverses curves of increasing partition ratio. ǫ1 = ǫ2 = 0.4.δ = 0.1.

The dashed curve corresponds to the deterministic limit. The evolution a → b (a → c) represents

the evolution of a purely entropic (energetic) system upon a temperature increase.

µm silica particles should experience much larger deflections than the other particles, which

would demonstrate that it is possible to fractionate particles by size or density. In Fig. 5 we

show the measured deflection angle (for θF = 45◦), as a function of the tilt angle (note that

unlike Pe and f , θt is common to all particles in a given experiment). The theoretical curve

corresponds to the LTD potential, with δ calculated from the best fit to the experimental

data and representing an effective transition region in the interaction between a suspended

particle and the bottom grooves. We obtain good agreement for the 4.32 µm silica particles

with δ = 0.10±0.01 (2.0± 0.2 µm), which compares well with an order of magnitude estimate
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FIG. 5. Deflection angle as a function of the tilt angle. The solid symbols correspond to the

experimental data as indicated. The dashed and dotted lines correspond to a fit of the experimental

results with the SW potential. The solid curves correspond to a fit with a LTD potential using the

width of the transition region as a fitting parameter (δ = 0.10). See supplementary information for

the standard deviations and for a video showing a representative experiment with 4.32 µm silica

particles [20].

δzoi = 2
√

2(a+ he) (∆H + κ−1) = 1.4 µm obtained by extending the concept of a zone of

influence [30] for a particle suspended at its equilibrium separation from the wall (he = 259

nm) and in the vicinity of a step [20]. The good agreement between the experiments and

the analysis based on the FJ approximation, even at relatively large Pe, results from the

narrow confinement of the particles by the effective particle-wall interaction potential, which

considerable reduces the diffusive equilibration time in the cross section [20]. In Fig. 5 we

also compare the results with the deterministic curve for the LTD potential with the same

10



δ = 0.10. The clear deviation from experiments for f ≤ 1 highlights the role of Brownian

motion reducing the deflection angle. The theoretical curves for 2.14 µm silica and 4.31 µm

polystyrene particles are insensitive to the width of the transition region, with differences

smaller than 2.5◦, and the data is compared to SW potentials, with good agreement. In these

latter cases, the particles easily overcome the energy barriers due to thermal fluctuations,

significantly reducing confinement effects and leading to small deflection angles.

We presented a unified description of planar vector chromatography in terms of the 1-D

periodic free-energy of the system, including both energetic and entropic contributions, that

encompasses the deterministic and stochastic limits. This description highlights the key

parameters governing the migration angle of different species. We performed experiments

in which gravity, along with a bottom surface patterned with slanted periodic grooves,

can be used to separate particles according to their mass, in agreement with our analysis.

More generally, the role of gravity can be effected or enhanced by other fields, e.g., electric,

dielectrophoretic, magnetic, potentially leading to a versatile technique.
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