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We present a study on swelling-induced circumferential buckling of tubular shaped gels. 

Inhomogeneous stress develops as gel swells under mechanical constraints, which gives 

rise to spontaneous buckling instability without external force. Full control over the post-

buckling pattern is experimentally demonstrated. A simple analytical model is developed 

using elastic energy to predict stability and post-buckling patterns upon swelling. 

Analysis reveals that height to diameter ratio is the most critical design parameter to 

determine buckling pattern, which agrees well with experimental and numerical results. 
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Buckling instability has been studied extensively for the past few decades as one of the 

most critical structural failure modes [1]. This classical theme is recently gaining new 

attention as a useful way for creation and transformation of patterns because buckling is 

often accompanied with large deformation and radical shape change of the structure. 

Nature has already developed such techniques to leverage mechanical instability to create 



a wealth of complex patterns. As biological tissues and organisms grow non-uniformly or 

under constraints, plane features transform into rich patterns with complexity as found in 

such examples as wavy edges of plant leaves [2], fine annular patterns in fingerprints [3, 

4], and inter-connected creases of brain cortex [5].  

This elegant approach to achieve pattern transformation by harnessing mechanical 

instability has not been much explored until recent progress in material science and 

manufacturing technologies for soft materials such as elastomers and hydrogels. 

Particularly, swelling gels have attracted increasing interest because they can actively 

grow and shrink depending on environmental conditions such as humidity, temperature, 

and pH [6-8]. Hydrogel-based structures, therefore, can spontaneously create and 

reversibly pose different patterns via buckling without the need for external load as 

opposed to classical structural buckling where mechanical force is essential to trigger 

mechanical instability. This holds great potential in development of self-operating 

devices with switchable functionalities. 

Recently, simple geometries of hydrogel systems have been investigated in this context, 

including hydrogel layers with different swelling ratio [9, 10], gel strips and disks bound 

to a hard substrate [11-13], and polymer films with periodic pores [14]. Taking advantage 

of buckling for pattern formation, however, has not been extended to more diverse shapes 

and geometries to further explore inspirations from nature where a host of dynamic 

features are found. Of particular interest in our study is tubular structure with 

circumferential wrinkles, which is not only geometrically interesting by itself, but also 

holds crucial physiological significance in biomedical engineering. For example, 

wrinkled airway of asthmatic bronchiole results from the swollen inner cell layer. Hence, 



its topology and corresponding mechanical condition are essential factors to better 

understand how diseased cells behave and interact with the physiological circumstances 

[15, 16]. Although numerical and theoretical studies on non-planar geometries such as a 

tube and a sphere have been reported [17-19], few have been able to create soft tubular 

structures with well controlled dimensions and constraints due primarily to lack of three-

dimensional (3D) fabrication technology for hydrogels. To reproduce complex patterns 

emerging in such structures has been even more challenging. 

Here we present demonstration of controlled pattern transformation of micro-structured 

tubular gels using swelling-induced circumferential buckling. Principle behind the pattern 

formation is explained by simple energy analysis and design criteria to control instability 

pattern is presented. We employed a novel 3D micro-fabrication technology, projection 

micro-stereolithography (PμSL) [20], to fabricate hydrogel micro tubes, the bottom of 

which is fixed to impose constraints against swelling as shown in Fig. 1(a). Characteristic 

dimensional parameters, t, h, and D represent thickness, height, and diameter of the 

model structure in dry state, respectively. Subjected to the fixed boundary condition on 

the bottom, the gel develops inhomogeneous stress when allowed to swell. By 

appropriate selection of dimension, constrained swelling can be made to exhibit buckling 

instability, causing the circular wall to transform into wrinkled patterns with different 

wave numbers. 

To demonstrate pattern formation, we fabricated tubular gel samples in different 

dimensions using poly(ethylene glycol) diacrylate (PEGDA) hydrogel (see Supplemental 

Material [21]). Four groups of samples (I-IV) with different levels of normalized 

thickness t/h were prepared, with group I being thicker and group IV being more slender. 



Each group consists of six samples (i-vi) with different levels of normalized height h/D, 

with the sample i being shorter and the sample vi being taller (see Supplemental Material 

for physical dimensions of each sample [21]). For swelling experiment, we placed a 

sample upside down and put in the bath with water covered with oil layer on top as 

illustrated in Fig. 1(a). Then the sample was brought into contact with water surface for 

swelling, while base substrate part on which the gel tube was fixed stayed in the top oil 

layer. In this way, water can diffuse into the tube wall allowing the sample swell before 

the constraining base relaxes by wetting. Circular tubes transformed into a wide variety 

of rich patterns as swelling proceeded, and the evolution of the gel morphology was 

recorded by a charge-coupled device (CCD) camera throughout the course of the 

experiment (see Movie S1 and Movie S2). 

Figure 1(b) presents swelling patterns obtained in the swelling experiment from different 

samples. Result of the experiment suggests strong connection between the normalized 

thickness t/h and stability, and between the normalized wall height h/D and buckling 

pattern. Samples in group I and II had tendency to remain stable during swelling, while 

samples in group III and IV underwent mechanical instability and transformed into 

wrinkled patterns. More interestingly, samples with the same normalized height h/D 

transformed into instability patterns with the number of wrinkles close to each other, 

regardless of the normalized wall thickness t/h. The same trend was observed when we 

repeated the same experiment using hydrogel with different stiffness and swelling ratio, 

confirming that dimension plays a dominant role in spontaneous buckling in swelling gel. 

To better understand and generalize this observation, morphology of swelling gel tube is 

studied via energy analysis. The interface between tubes and substrates have been treated 



to achieve very strong bonding in the experiment, which would otherwise influence 

buckling formation and mode [22]. Therefore, base of the tube is considered as a fixed 

boundary condition, whereas the rest of the structure is free to swell. When allowed to 

swell, there are two possible configurations for the swollen tube to adopt in order to 

accommodate expanded geometry in the original dimension; compression and buckling, 

as illustrated in Fig. 1(a). The system chooses a shape that minimizes total potential 

energy. We assume that the entire structure first swells to the fully swollen state and then 

the bottom end is forced to fit into its original dry dimension. Therefore, fully swollen 

state is considered as stress-free reference state, and any deformation from it has an 

elevated potential energy. Although swelling of gel under constraints involves a coupling 

of elastic and chemical equilibrium, this coupling effect is negligible because the free 

energy due to the coupling is assumed to be a constant for both compression and buckling 

configurations, permitting pure elastic consideration. For compressed configuration in 

which the structure stays stable, the cross-section of the tube remains circular with the 

radius varying with height. Therefore, increase in potential energy results solely from the 

in-plane compression of the structure. On the other hand, situation is not as simple in 

buckled configuration where wrinkled wall undergoes bending in both circumferential 

and axial direction. We analyze the elastic energy for both configurations to predict 

stability as well as post-buckling pattern (see Supplemental Material for detailed 

formulation [21]).  

For stable configuration, cross-section of the tube remains circular with the radius being a 

function of height only. Therefore, increase in potential energy results solely from the in-

plane compression of the structure. We assume that radius is linearly varying from the 



dry radius, R (=D/2), at the fixed bottom to the fully swollen radius, λR, at the top, where 

λ denotes length-wise equilibrium swelling ratio. Since only in-plane compression is 

involved, total elastic energy in the stable configuration is obtained as 

Ustable = 1
24

π EDth ⋅ b(λ),         (1) 

where E  is Young's modulus of the fully swollen gel and 2( ) (1 1 ) (3 )b λ λ λ= − + . 

Once the structure becomes mechanically unstable, it buckles and creates wrinkles. In 

this configuration, the swollen gel fits into confined geometry by posing a wavy shape at 

cost of elastic energy. There are two major parts of energy involved in this case. The first 

part is the elastic energy due to the wavy bending along the circumferential direction. 

This energy contribution increases with buckling mode because the wall undergoes more 

bending with large curvature in higher buckling mode. The second part is the elastic 

energy due to the deflection of the wall in axial direction. As the gel swells more near its 

free upper end than near its confined bottom, the gel wall has to deflect outwards or 

inwards in axial direction depending on the position on the wave. This energy 

contribution decreases with buckling mode because higher buckling mode results in 

smaller wave amplitude in given length, thus less axial deflection is necessary. Therefore, 

with the two energy contributions working together, there exists an optimum buckling 

mode that gives minimum total potential energy. This argument can be formulated by 

assuming sinusoidal wave pattern. Wave amplitude is obtained in a closed form using 

approximation for the elliptic integral [23]. The energy due to the circumferential 

bending is obtained by integrating local bending energy varying with the curvature on the 

sinusoidal wave. The energy due to the axial deflection is modeled as bending of a set of 



cantilever beams surrounding the central axis. In this way, total elastic energy for buckled 

configuration is obtained as an analytical form given by 
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where n  is a number of waves along the circumference (i.e., buckling mode) and 

a(λ) =[(2 / (3−λ))2 −1]1 2 . It is interesting to note that two terms are proportional to 2n  

and 21 / n , respectively. The former is from circumferential bending (lower energy for 

lower mode) and the latter is from axial deflection (lower energy for higher mode). We 

find that this opposite dependence on mode number of two energy contributions in (2) 

brings the system to a certain buckling mode in the event of buckling. Moreover, it is 

surprising to see that dimensional parameters involved in this competition in the bracket 

in (2) are h and D only. In other words, other seemingly-important parameters such as t, 

λ, and E have no impact on the determination of buckling mode. This trend is verified 

from our experiments shown in Fig. 1(b). Once the tube buckles, the buckling mode does 

not depend on t, but only on h/D. 

Figure 2(a) plots the total potential energy for buckled configuration (2) as a function of 

h/D for different possible buckling modes. We can clearly see that for each h/D, there is a 

mode number n  which brings the potential energy to the minimum, suggesting 

corresponding buckling patterns for given dimension. Taking 0unstableU n∂ ∂ =  yields  

n = 0.944
(h/D)

.          (3) 



As the actual buckling mode number is an integer, n  is either its largest previous or 

smallest following integer, whichever gives lower potential energy. This is plotted as a 

step-like function in Fig. 2(a). 

Between stable and buckled state, the system chooses the configuration at the lower 

energy level. Instability index is defined as follows from (1) and (2) to characterize 

relative magnitude of the energy levels, 

γ = Ustable

Uunstable n = n

= 1
(t /h)2

⋅c(λ) ,         (4) 

where c(λ) = ( 35/11 / 6)[b(λ) / a2(λ)] is a swelling factor increasing monotonically with 

λ. γ >1 means stable unstableU U> , thus the system opts to buckle, while 1γ <  means 

stable unstableU U< , thus the system remains stable. This result implies that stability is 

determined by the aspect ratio of tube wall t/h and swelling ratio λ, which matches well 

with the result found in the literature ( λcr = 0.867 ⋅ (t / h)2) [11]. λcr required to trigger 

buckling instability is plotted as a function of the wall aspect ratio in Fig. 2(b), suggesting 

that slender walled tube becomes mechanically unstable at smaller swelling ratio. 

Figure 3(a) is a stability map that can predict both stability and buckling pattern together. 

With the horizontal and vertical axes representing h/D and t/D, respectively, any tube 

geometries can be mapped onto this plot. For given equilibrium swelling ratio λ, 

corresponding critical wall aspect ratio (t/h)cr for instability from (4) can be represented 

by a straight line drawn from the origin. The shaded area under this line is unstable 

region where 1γ > , hence samples fall into this region are expected to buckle. The slope 

of this boarder line increases with λ, making the unstable region larger. Furthermore, 

since buckling mode depends only on h/D as shown in (3), the buckling mode number 



can be determined based on the horizontal position of the sample on this map. 

Collectively, stability of the swelling gel tube as well as buckling pattern can be predicted 

together from this plot. 

To validate the theory, samples tested in swelling experiment in Fig. 1(b) are mapped 

onto the stability map in Fig 3(a). The critical stability line is drawn for λ=1.5. Samples 

on the same sloped line (I-IV) have the same instability index. Instability indices defined 

by (4) for each line are 0.25, 0.55, 2.18, and 4.98, respectively, which means that group I 

and II above the stability line should remain circular while group III and IV below the 

stability line are expected to create wrinkles. This prediction agrees with experimental 

result shown in Fig. 1(b). Discrepancy is found in only a few cases of II-(i-iii) (in the 

dotted circle) where nonlinear material behavior of gels at high stress is no longer 

negligible. 

From (3), we know that samples aligned on the same vertical line (i-vi) should transform 

into the same buckling mode regardless of t. This was also experimentally observed in 

Fig. 1(b). Samples on the same column in Fig. 1(b) have the same h/D and their buckling 

modes are close to each other. The small difference across different groups should come 

from the thickness effect. For samples with thick wall, in-plane strain energy along the 

circumferential direction should also be considered, whereas this term is negligible for 

thin wall tube buckling where only out-of-plane strain energy along the circumferential 

direction is dominant. The experimental results for buckling mode numbers are plotted in 

Fig. 3(b). Buckling patterns from samples spanning a wide range of physical dimension 

collapse well around theoretical prediction obtained from Fig. 2(a). This shows that we 

demonstrated full control over the pattern of gel tubes formed by mechanical instability. 



The pattern formation has also been simulated by finite element method (FEM), which 

adopts a coupled theory that considers the total free energy of the gel due both to the 

polymer network deformation and polymer-solvent mixing [24, 25]. The result also 

shows good agreement with FEM simulation. A set of representative results is shown in 

Fig. 1(b). See Supplemental Material [21] for detailed finite element analysis and full 

comparison between experimental and simulation result. 

In summary, we have demonstrated well-controlled wrinkle formation of confined 

hydrogel tube using swelling-induced circumferential buckling. We have also developed 

a simple theory based on elastic energy and found that key dimensional parameters 

sensitive to stability and buckling pattern formation are thickness to height ratio and 

height to diameter ratio, respectively. Our experimental results showed good quantitative 

agreement with theoretical prediction as well as FEM simulation. Reversible nature of 

swelling and shrinking of hydrogel further promises unique opportunities to develop 

versatile devices with tunable properties. We believe our study on buckling of swelling 

gels will contribute to increasing the breadth of possible application of soft materials in 

many emerging fields where complex morphologies and dramatic pattern shift are of 

critical importance, such as tissue engineering and tunable photonic/phononic band gap 

materials. 
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FIG. 1: (Color online) Pattern formation by circumferential buckling of gel tube (a) 

Characteristic dimensions of tubular gel and experimental setup. (b) Patterns formed in 

swelling experiment. Samples in the same row have the same t/h, and samples in the 

same column have the same h/D (Scale bar indicates 3 mm). Once buckles, the samples 

in the same row (i.e, with the same h/D) show the similar buckling patterns and the 

samples in the same column (i.e., with the same t/h) show the similar stability behavior. 

FEM simulation result for the group iv is also presented showing good agreement with 

experiment. (Color bar indicates normalized height.) 
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FIG. 2: (Color online) Theoretical prediction (a) Potential energy for different buckling 

mode. Minimum energy mode varies with h/D, resulting in different buckling patterns. 

(b) Critical swelling ratio for mechanical instability 
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FIG. 3: (Color online) Stability and buckling pattern (a) Critical t/h line (dotted) for 

λ=1.5 divides upper stable region and shaded unstable region below. Samples shown in 
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Fig. 1b are grouped into four groups (I-IV) by t/h for stability and into six groups (i-vi) 

by h/D for buckling pattern and are positioned on the stability map. (b) Buckling mode 

number from unstable samples from experiment. They match well with the prediction by 

present theory (solid line) as well as the analog of linear elasticity model for strip 

buckling from the literature (dotted line) [11]. 


