
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Enhancement of Mechanical Q Factors by Optical Trapping
K.-K. Ni, R. Norte, D. J. Wilson, J. D. Hood, D. E. Chang, O. Painter, and H. J. Kimble

Phys. Rev. Lett. 108, 214302 — Published 21 May 2012
DOI: 10.1103/PhysRevLett.108.214302

http://dx.doi.org/10.1103/PhysRevLett.108.214302


Enhancement of mechanical Q-factors by optical trapping

K.-K. Ni1, R. Norte2, D. J. Wilson1, J. D. Hood1, D. E. Chang1,3, O. Painter2, and H. J. Kimble1
1Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, CA 91125

2T. J. Watson, Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125 and
3ICFO - Institut de Ciences Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain

The quality factor of a mechanical resonator is an important figure of merit for various sensing
applications and for observing quantum behavior. Here, we demonstrate a technique to push the
quality factor of a micro-mechanical resonator beyond conventional material and fabrication limits
by using an optical field to stiffen or “trap” a particular motional mode. Optical forces increase the
oscillation frequency by storing most of the mechanical energy in a nearly lossless optical potential,
thereby strongly diluting the effect of material dissipation. By using a 130 nm thick SiO2 disk as
a suspended pendulum, we achieve an increase in the pendulum center-of-mass frequency from 6.2
kHz to 145 kHz. The corresponding quality factor increases 50-fold from its intrinsic value to a
final value of Q = 5.8(1.1)× 105, representing more than an order of magnitude improvement over
the conventional limits of SiO2 for this geometry. Our technique may enable new opportunities
for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical
systems.

PACS numbers:

Mechanical resonators are widely used as exquisite sen-
sors of weak perturbations such as small forces [1, 2],
displacements [3, 4], and changes in mass [5, 6]. In
fact, a number of systems have advanced to the point
that it is possible to detect quantum effects in their mo-
tion [4, 7–9], raising the exciting possibility that such
systems might eventually lead to applications in quan-
tum information processing [10–12] and the observation
of quantum effects at macroscopic scales [13, 14].

The performance of a mechanical resonator depends
critically on its quality factor, which characterizes both
the maximum response of an oscillator to a disturbance
at its resonance frequency (signal) and the coupling rate
to its surrounding dissipative environment (noise). Im-
proving quality factors beyond state-of-the-art parame-
ters is a challenging task since a number of systems are
now limited by fundamental dissipation mechanisms, e.g.
thermoelastic damping [15] and internal friction [16].

In this Letter, we experimentally demonstrate a tech-
nique that enables the quality factor of a mechanical sys-
tem to be enhanced beyond conventional material limits.
Our technique involves optically trapping a thin, dielec-
tric membrane whose geometry is designed so that the
natural material forces are extremely weak [17]. In this
limit, almost all mechanical energy is stored in an ul-
tralow loss potential provided by strong optical restoring
forces, which dilute the effects of internal material dis-
sipation [17, 18]. The trapped oscillator is analogous to
a mechanical oscillator with a spring that is stiffen by
increased mechanical tensile stress [19–21] in that both
the oscillator frequency and the Q increase. Our gen-
eral scheme is implemented for a particular example of
an SiO2 dielectric disk supported by a single thin tether,
trapped in an optical standing wave. We observe an in-
crease in the “pendulum” mode frequency from 6.2 kHz
to 145 kHz as the optical power is increased, leading to
a final quality factor of Qf = 5.8(1.1) × 105. Qf repre-

sents greater than fifty-fold increase over the intrinsic Qi
of our device in the absence of optical trapping forces,
and significantly, more than an order of magnitude im-
provement over estimates of the conventional dissipative
rate of our SiO2 disk [22, 23]. These results substantiate
the potential of our technique to facilitate mechanical
sensors with enhanced sensitivity and quantum devices
based upon mechanical systems.

Optical forces are generally feeble as compared to me-
chanical forces, which makes optical manipulation of me-
chanical oscillators challenging. To implement optical
trapping of membranes, we begin by fabricating a nearly
free-standing dielectric film in a pendulum geometry. We
chose SiO2 as the membrane material mainly for its low
optical absorption [24]. The pendulum (Fig. 1) consists
of a 10 µm diameter disk held by a 50 µm × 0.43 µm
tether, which is attached to a large, square annulus of
SiO2 that has a width of ∼ 60 µm. The thickness of all
the suspended parts (i.e. the disk, the tether, and the
annulus) is 130 nm.

To investigate properties related to a trapped pendu-
lum, we load the 1×1 cm pendulum chip, which typically
contains a dozen devices, into a vacuum chamber tra-
versed by an optical standing wave. A schematic of the
experimental setup is shown in Fig. 2(A). The pendu-
lums hang vertically inside the chamber, which is evacu-
ated to a pressure below 10−7 mbar to make gas damp-
ing negligible. The optical standing wave is formed by
a retro-reflected Gaussian beam, which has been focused
to a 1/e2 waist ω0 ' 17 µm at the position of the disk.
The trap beam is derived from a high power Nd:YAG
laser operating at a wavelength of λ =1.064 µm. We
vary the incident laser power between 3 mW to 17 W
using a waveplate and a polarizing cube. The center-
ing of the trap beam on the pendulum disk is critical
for achieving large trapping potentials without mixing
“center-of-mass” (CM) motion of the pendulum with vi-
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FIG. 1: Scanning electron micrographs of the device: a 130
nm thick SiO2 membrane forms the pendulum, which consists
of a 10 µm diameter disk and a 50 µm × 0.43 µm tether. (A)
Overview: The pendulum is suspended from a 60 µm wide
SiO2 annulus. The annulus (wrinkled area) and the pendulum
are etched into a SiO2 film for which the Si substrate directly
underneath has been removed. The dark background in the
center is a clear opening of the substrate. (B) Close-up view
of the pendulum, which is deflected 10-15 degrees out of the
plane of the substrate due to residual stress of the film.

brational modes of the tether. This degree of freedom is
carefully aligned by monitoring transmission of the for-
ward and retro-reflected beams through the disk. In ad-
dition, to ensure that the disk is perpendicular to the
optical standing wave, we implement a pair of actuators
to tip and tilt the chip to prevent the pendulum from
settling into a configuration in which the disk extends
over multiple periods of the standing wave.

For the optical standing wave configuration shown
schematically in Fig. 2(A), we estimate the trapping po-
tential by balancing expressions for the radiation pres-
sure force on either side of the membrane. To simplify
the problem, we assume that the disk is infinitely stiff,
that it is free to move along the axis of the trap, and
that the incident optical beam is smaller than the disk so
that diffraction from the edges may be ignored. We solve
for the electric-field of a single beam in the presence of
two reflectors, M1(the disk) and M2, as a function of the
membrane thickness, dm. Stable equilibria occur at the
positions where the force between the incoming beam and
the finite electric field built up between M1 and M2 are
balanced, which are neither at nodes nor anti-nodes of the
standing wave. At each equilibrium position, the optical

spring constant of the trap is kopt = 16π
λ
|rm|
|tm|

P
c , where P

is the incoming power, rm and tm are the reflectance and
the transmittance of the membrane determined by dm
and the index of refraction of the film [25], and c is the
speed of light. In Fig. 2(B), we plot the calculated op-

tical trapping frequency, fopt =

√
kopt/m

2π , normalized to
the prediction for a membrane with dm/λ → 0. For our
membrane with thickness dm = 0.13µm, the trapping
frequency is 88% of the value predicted for a membrane
with dm/λ→ 0. It is interesting to note that the optical
spring constant for a membrane in the middle of a high

finesse Fabry-Perot cavity is also kopt = 16π
λ
|rm|
|tm|

P
c , where
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FIG. 2: Optical trapping of a membrane disk. (A) Schematic
of the experimental setup. The membrane chip is enclosed
inside a vacuum chamber. We trap the disk in an optical
standing wave formed by a single laser beam at 1.064 µm and
its reflection from the disk (M1) and a mirror (M2, reflectivity
= 0.98). We monitor the thermal motion of the pendulum by
the deflection of an off-axis probe beam (blue) reflected from
the disk onto a quadrant photodiode (PD1) and transmitted
intensity onto PD2. (B) Calculated trap frequency fopt vs
membrane thickness dm normalized to fopt at dm/λ → 0 for
a fixed optical power. For dm ∼ λ, we solve for the steady
electric-field amplitude on the left and right of the membrane.

P is now the circulating power. In this case, however, the
membrane center would be trapped specifically at either
an anti-node or a node of the standing wave depending
on the membrane thickness.

Intrinsic vibrational modes and frequencies of the pen-
dulum structure are probed by reflecting an independent
“probe” beam (λ = 0.852 µm) from the disk at an oblique
angle (50◦) with respect to the trap. The reflected beam
is directed to a quadrant photodiode (PD1) [26] which is
calibrated using the membrane tip/tilt actuators. The
quadrant photodiode can be split into two horizontal
pairs of sensors (“top” and “bottom”) and two vertical
pairs of sensors (“left” and “right”). Analysis is per-
formed on the difference between the “top” and “bottom”
combined photosignals (expressed as a transimpedance-
amplified photocurrent, VTB(t)) and the difference be-
tween the “left” and “right” combined signals (VLR(t)).
Fourier transforms of VTB(t) and VLR(t) reveal the fre-
quencies and tip/tilt orientation of the vibrational modes
(Fig. 3(A)). We identify low-order vibrational modes by
comparison of the observed frequency spectrum and their
characteristic mode shapes to a finite-element simulation
(Fig. 3(B), COMSOL 3.5a) based on the membrane ma-
terial properties and its geometry measured using a scan-
ning electron microscope. We see approximately a factor
of two discrepancy in the simulated frequencies versus
measurements in the absence of optical forces. This is



3

a1

a2

b2

b1
a3

c1

(A) (B)

╳

“b”

“a”

a1

b1

c1

d1

f
(k

H
z)

f
(k

H
z)

“a”

“b”

♢

0 1 2 3 4 5

100

200

300

400

500

0 1 2 3 4 5

100

200

300

400

500

(C)
c1b1 a3a1 a2 b2

�
P (W)

�
P (W)

x

y

z

FIG. 3: Displacement power spectrum of vibrational modes.
(A) Spectrogram of vertical angular displacement (inferred
from deflection measurement, Fig. 2(A)) versus trapping
power, P . Several vibrational mode branches are evident,
e.g. “a” and “b”. As the optical trap power is increased
(in discrete steps), the frequencies of the three lowest modes

(a1, b1, c1) increase as
√
f2
0i + αi · P (see text). Two avoided

crossings are visible here: (♦) formed by the CM mode and
the violin mode; (×) formed by the CM mode and an an-
nulus mode. At higher powers, the CM mode is a hybrid
of pendulum and violin motion (b2). Other visible modes in
the spectrum are associated with vibrations of the annulus.
Overall, the CM frequency shifts from 6.2 kHz to 145 kHz
when 4.3 W of optical power is applied. (B) Finite-element
simulated spectrum of an optically trapped pendulum (black)
suspended from an annulus (blue) that is in turn anchored to
a substrate (as in Fig. 1(a)) for qualitative comparison to
(A). The red lines in both (A) and (B) are drawn for a trap-

ping slope of α = 4500 kHz2

W
. (C) Simulated mode shapes for

different optical trapping forces in (A). (a1) the “pendulum”
mode, also called the “CM” mode, (b1) the “violin” mode,
and (c1) the “torsional” mode.

most likely due to an overestimate of the Young’s mod-
ulus for the very thin SiO2 layer where surface effects
can be important. The mode shapes in the absence of
optical forces calculated from simulation are illustrated
in Fig. 3(C) as (a1) the “pendulum” mode, also called
the “CM” mode, where the pendulum disk swings along
the axis of the trapping beam (f0a = 6.2 kHz), (b1) the
“violin” mode (f0b = 93 kHz), and (c1) the “torsional”
mode (f0c = 109 kHz). One additional mode that is not
shown in the figure is (d1) the transverse pendulum mode
swinging orthogonal to the axis of the trapping beam (25
kHz). We are most interested in the CM mode because
it exhibits the least mechanical deformation which leads
to energy dissipation [17].

In the presence of an optical trap, the frequency of the
membrane is determined by the sum of the optical restor-

ing force and the intrinsic mechanical restoring force.
The contribution from gravity is small (< 100 Hz) and
is neglected. The trap is first aligned at a low trapping
power (3 mW). To ensure that the tether does not pro-
vide a significant initial restoring force, we also fine tune
the trapping laser wavelength so that the equilibrium po-
sition of the trap coincides with the natural axial position
of the membrane. We diagnose their coincidence by min-
imizing the vertical deflection of the probe beam (evident
in the mean value of VTB) when the trap is turned on.
Figure 3(A) shows the power spectrum of VTB , which
reflects the vertical angular displacement of the pendu-
lum, as a function of trap power, P . For comparison,
we show a spectrum generated by a finite element model
(Fig. 3(B)) that treats the optical trap as a restoring
force with a Gaussian transverse profile. Close compari-
son of the observed and model spectra adds to our under-
standing of several distinct features. As the optical trap
power is increased, the frequencies of the three lowest
visible modes increase as

√
f20i + αi · P , where f0i repre-

sents their natural frequency and αi is the trapping slope
coefficient for each mode. As the CM mode frequency in-
creases, the mode shape also changes via the bending of
the tether. This change is first evident in the reduction
of the CM mode signal near 50 - 75 kHz. The reduction
occurs as the mode shape changes from Fig. 3(C, a1) to
(C, a2), which to first order does not deflect vertically. In
addition, as expected, we do not see such a reduction for
corresponding trapping beam transmission on PD2 (not
displayed) that probes pure axial disk displacement. The
mode shape again changes as the CM mode and the vi-
olin mode (Fig. 3(C, b1)) form an avoided crossing near
93 kHz. At higher power, the CM mode is a hybrid of
pendulum and violin modes (Fig. 3(C, b2)). As the fre-
quency continues to increase, the CM mode crosses an
annulus mode. Overall, the CM mode frequency shifts
from 6.2 kHz to 145 kHz when 4.3 W of optical power is
applied, corresponding to a trapping slope coefficient of
αCM = 4880 kHz2/W, in good agreement with the simu-
lated value of αFEMCM = 4500 kHz2/W (the inferred value
from measurement being overestimated due to the mode
anti-crossing). At trapping powers greater than 4.3 W,
we find that the CM frequency (f =145 kHz) is near yet
another vibrational mode of the annulus. With further
increases in power, the large thermal displacements of
the annulus mode greatly dominates the motion of the
CM pendulum mode, making it difficult to identify.

One of the most important consequences of optical
trapping is an increase of the mechanical Q [17]. The
large increase in frequency of the CM mode through
optical trapping implies that the amount of mechani-
cal energy stored in the optical fields Uo dominates over
that stored in internal stresses, Um. Because the op-
tical potential is nearly lossless due to the low optical
absorption of SiO2 [24], the effects of material dissipa-
tion are diluted by a factor Um/(Uo + Um). Therefore,
we would expect the mechanical Q of the system to in-
crease as the inverse of the dilution factor ∼ Uo/Um for a
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FIG. 4: Mechanical Q-factor of the trapped pendulum. (A)
Finite-element calculation of the ratio between the energy
stored in the optical potential (Uo) and the mechanical poten-
tial (Um) vs trap frequency. The two branches corresponding
to “a” and “b” vibrational modes respectively in Fig. 3. (B)
Q vs trapping frequency for two vibrational modes in the trap,
independently recorded on PD1 (circles) and PD2 (triangles).
In addition, two dataset with slightly different optical trap-
ping alignments are shown for “a” (light and dark green) and
“b” (light and dark magenta). The Q of the CM mode in-
creases 60-fold from its natural value, Qi = 1.1(2)·104 (P = 0,
data in red square) with a slope that is consistent with (f/f0)2

scaling (solid line) before turning over near the avoided cross-
ing (♦) with a violin mode. Beyond this avoided crossing,
Q increases again followed by a minimum near the annulus
avoided-crossing (×) and then a steep increase. We also show
the expectation of a Q-increase that scales as f/f0 (dashed
line) for comparison. We find the measured Q increase to be
in qualitative agreement with the calculated 1 + Uo

Um
in (A).

frequency-independent damping mechanism. For an ideal
system, one would find an indefinite increase in the ratio
Uo/Um = (f/f0)2 with increasing trap power. In prac-
tice, this ratio saturates due to factors such as the mass
ratio between the trapped disk and the untrapped tether,
the mode mixing with the modes of the support structure
(tether and annulus in our case), and induced mechani-
cal strain due to an inhomogeneous trapping beam pro-
file [17]. Accounting for these effects, our finite-element
simulation predicts a maximum of Uo/Um ∼ 100 (see Fig.
4(A)) in our experimentally achievable frequency range.
Further improvement on reduction of the tether width
will increase the Uo/Um ratio.

To infer the Q of the trapped pendulum, we record
the thermal motion X(t) ∝ VTB(t) at each laser power
for a few minutes and numerically compute the energy
auto-correlation, RE(τ) ≡ 〈X(t)2X(t + τ)2〉, over a
Fourier frequency range encompassing the mechanical
frequency [27]. For a highQ oscillator driven by Gaussian
thermal noise, RE(τ) is characterized by an exponential
decay with time constant τE , in correspondence to our
measurements and relates to the mechanical quality fac-
tor by Q = 2πfτE . We verify our oscillator is driven by
thermal energy by comparing the pendulum disk angular

displacement energy in the absence of the optical trap
to the expected thermal energy at 300 K and find the
agreement to be within 20%. This agreement rules other
technical noise drives such as seismic noise or beam point-
ing noise insignificant. The pendulum in the absence of
trapping forces has an initial value Qi = 1.1(2)×104 and
a 20% deviation from shot to shot.

A summary of our Q-measurement results is presented
in Fig. 4(B). We compare the result of monitoring verti-
cal angular displacement of the pendulum on PD1 (data
in circles) with the result of monitoring axial displace-
ment of the pendulum via the trap beam transmission
through M2 on PD2 (triangles). The results are consis-
tent in both cases. We observe that the initial Q in-
crease to a maximum value Qa = 6.9(1.4) × 105 is con-
sistent with the (f/f0)2 scaling and which is in contrast
with the stress induced Q-increase studied in SiN nano-
strings [19–21]. After the initial increase, Q then drops as
the CM mode crosses the violin mode, which is a conse-
quence of an increase of the strain energy in the bending
of the tether [17]. Beyond the avoided crossing with the
violin mode and a subsequent annulus mode (arrow ×),
the Q of the CM mode increases again by a factor of
> 50 relative to Qi to a final value Qf = 5.8(1.1)× 105.
The dependence of Q on frequency is in qualitative agree-
ment with the calculated Uo/Um in Fig. 4(A). Overall,
we demonstrate that by adding optical energy but not
dissipation into the system, we can increase the mechan-
ical Q by more than an order of magnitude.

We expect that further significant advances can be
made with refined fabrication techniques and a shift to
materials with better mechanical characteristics. For in-
stance, the mechanical frequency and the corresponding
Q-factor of our trapped pendulum is limited in part by
the large suspended annulus to which the tether is at-
tached (Fig. 1). Using wet chemical anisotropic etch-
ing of Si to release the pendulum, it should be possible
to fabricate a device with an annulus less than 10 µm
wide. Furthermore, while SiO2 proved to be convenient
to work with initially, it suffers a relatively low intrinsic
quality factor of Qi ∼ 104 that is likely to be limited by
surface-related damping mechanisms [22, 23]. Although
the nature of surface damping is still an open question
and not necessarily a fundamental limitation, we can still
compare our observed Qi to other SiO2 devices. From
the extensive phenomenological study of SiO2 loss an-
gle [23] and the surface-to-volume ratio of our pendulum,
we would expect Qi ∼ 9200, which is consistent with our
observation of Qi ≈ 1.1 × 104. Switching platforms to
stressed silicon nitride or crystalline silicon should en-
able material quality factors of Qi ∼ 105-107 [28–30]. In
initial experiments with Si3N4, for example, we have fab-
ricated stressed, tethered structures (similar to [31]) with
bare frequencies of 172 kHz and Qi ∼ 1.3·107. We expect
that by applying optical trapping to such structures, final
quality factors of Qf ∼ 108 might be possible for oscilla-
tor frequency ∼ 1 MHz. Such values would be unprece-
dented for any fabricated nano- or micro-mechanical sys-
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tem, and remarkably, would be competitive with the pre-
diction for untethered levitated nano-particles [32–36].

Our technique holds promise as a tool to reduce the
role of mechanical dissipation in a wide variety of sens-
ing applications as well as in the emerging field of quan-
tum opto-mechanics [37]. Our device can be integrated
into a high-finesse cavity employing the “membrane-in-
the-middle” geometry [30, 38], for example, and could
provide the long coherence times necessary to observe
quantum behaviors (i.e., macroscopic entanglement) in a
room temperature environment [13, 14]. This work re-

veals a fascinating new aspect of the interplay between
motion and light [39] and should stimulate further explo-
ration.
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