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We calculate the three-body spectrum for identical bosons interacting via attractive 1/r2 poten-
tials. We have found an infinite number of three-body states even when the pair interactions are
too weak to support any two-body states. These new states thus share this surprising scenario with
the Efimov effect, but are not themselves Efimov states. Our effect occurs for both identical bosons
and identical fermions, and it persists in the presence of two-body bound states.

PACS numbers:

In its long history, quantum mechanics has offered a
wide variety of counterintuitive phenomena. One exam-
ple that has received considerable interest lately is the
Efimov effect from few-body physics. Predicted by Vi-
taly Efimov in 1970 [1–4], but not clearly observed exper-
imentally until 2006 using ultracold atomic gases [5–10],
the effect that has now taken his name refers to the emer-
gence of an infinite number of three-body bound states
when none of the two-body subsystems are bound. Cen-
tral to the effect is the requirement that the two-body in-
teractions are short-ranged, i.e. fall off faster than 1/r2

when r is a two-body interparticle distance, so that a
two-body s-wave scattering length a can be defined. The
Efimov effect occurs when |a|→∞.
Far from being an esoteric theoretical curiosity, the Efi-

mov effect has a profound impact on low-energy three-
body collisions even when a is finite [5–14]. At low
enough collision energies, the de Broglie wavelength is
large compared to a characteristic short-range length
scale r0 and thus insensitive to details on this scale.
Consequently, in this limit, three-body systems display
universal behavior dependent only on a and short-range
three-body parameters [13]. Therefore, the desire to
obtain the universal behavior of low-energy three-body
observables motivates the study of weakly-bound three-
body systems beyond the fundamental, intrinsic interest
such systems elicit.
Generally speaking, two-body potentials can be cate-

gorized as short- or long-ranged based on whether they
fall off faster or slower, respectively, than 1/r2 when
r→∞. Efimov’s effect occurs in systems with short-range
two-body interactions, and we know that an infinity of
three-body bound states can occur in systems with long-
range two-body interactions like the Coulomb interac-
tion. Thus, to complete our knowledge of three-body sys-
tems interacting via local two-body potentials, we must
ask: What three-body spectrum results from attractive
1/r2 two-body interactions — which lie exactly at the
boundary between short- and long-range?
This question turns out to be quite rich. For instance,

depending on their strength, 1/r2 potentials can have
no two-body bound states when they are subcritical or
critical, or they can have an infinity of two-body bound

states when supercritical. Clearly, one interesting ques-
tion is whether there is an infinite number of three-body
bound states in the subcritical case.
In this Letter, we show that this scenario is indeed

possible for three interacting, indistinguishable bosons
in three dimensions. We can thus reproduce the counter-
intuitive result of Efimov’s scenario, an infinity of three-
body bound states in the absence of two-body bound
states, but with long-range two-body potentials. While
our scenario bears a superficial resemblance to Efimov’s,
it is, however, fundamentally different since a — a nec-
essary ingredient for the Efimov effect — is not even de-
fined.
In addition, we show that when two-body bound states

are formed, either by a short-range interaction or by
strongly attractive 1/r2 interactions, an infinite number
of three-body bound and resonant states appear. More-
over, we show that our states also occur in a system of
three identical, spin-polarized fermions — a system for
which no Efimov effect occurs. On this basis, we argue
that the four-body “Efimov states” recently identified in
Ref. [15] are actually our states.
Our study is based on numerical solutions [16] of the

three-body Schrödinger equation in the adiabatic hyper-
spherical representation [16–18]. In this representation,
the overall size of the system is measured by the hyperra-
dius R, and the configuration of the system is represented
by a set of five hyperangles collectively denoted Ω. Sub-
stituting the exact wave function in this representation,

Ψ(R,Ω) =
∑

ν

Fν(R)Φν(R; Ω), (1)

into the Schrödinger equation produces coupled hyperra-
dial equations

(

− ~
2

2µ

d2

dR2
+Wνν

)

Fν +
∑

ν′ 6=ν

Wνν′Fν′ = EFν , (2)

where µ = m/
√
3 for identical particles of mass m. The

adiabatic channel functions Φν in Eq. (1) are obtained
from

HadΦν(R; Ω) = Uν(R)Φν(R; Ω) (3)
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in which the adiabatic Hamiltonian Had includes every-
thing from the total Hamiltonian except the hyperradial
kinetic energy.
To determine the three-body spectrum, we focus on

the behavior of Wνν in Eq. (2). We will restrict our dis-
cussion for three identical bosons to total orbital angu-
lar momentum J=0 and total parity Π=+1. Moreover,
it is sufficient to neglect the interchannel coupling Wνν′

since the single-channel approximation gives a strict up-
per bound to the three-body bound state energies [19].
The Wνν are defined as

Wνν(R) = Uν(R) +
~
2

2µ

〈〈

dΦν

dR

∣

∣

∣

∣

dΦν

dR

〉〉

. (4)

Here, the double-bracket signifies that the integration is
carried out only over the hyperangles.
For the potential energy V that appears in Had,

we assume a pairwise sum of two-body potentials,
V=v(r12)+v(r13)+v(r23), where

v(rij) = −α2 + 1/4

mr2ij
~
2 (5)

for interpartical distances rij . For the subcritical case, –
1/4<α2≤0 [20], v(rij) does not support any two-body
bound states even though it is attractive and long-
ranged. For the supercritical case, α2>0, the singularity
at the origin leads to the “fall-to-the-center” problem,
and a ground state is not defined [20–22]. After some
regularization, v(rij) supports an infinite number of two-
body bound states with properties that generically fol-
low a geometrical scaling. For instance, the bound state
energy En and mean radius 〈r〉n of the n-th state are,
respectively,

En+1/En = e−2π/α and 〈r〉n+1/〈r〉n = eπ/α. (6)

For the two-body potentials in Eq. (5), it is well known
that the hyperradial dependence can be exactly separated
from the hyperangles. In this case, Wνν=Uν and takes
the form

Wνν = −α2
ν + 1/4

2µR2
~
2, (7)

where αν are universal constants dependent only on α.
For most any conceivable realization of an attractive

1/r2 two-body potential, however, there will be some
short-range modification of Eq. (5) that will remove the
singularity. To investigate the role of such a modification,
we considered

v(rij) = − α2 + 1/4

m[r20 sech2(rij/r0) + r2ij ]
~
2. (8)

The parameter r0 sets the scale of the short-range regu-
larization.
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FIG. 1: (Color online.) (a) The three-body effective poten-
tials Wνν(R) for three identical bosons with α2=0. (b) The
asymptotic behavior of W00(R) with the indicated values of
α2. The symbols are solutions of Eq. (3), while the solid lines
are fits based on Eq. (9).

Surprisingly, for the subcritical regime –1/4<α2≤0,
the regularized potential, Eq. (8), dramatically changes
the asymptotic behavior of W00 from Eq. (7) to

W00(R) → −
√

β ln(R/r0) + δ

2µR2
~
2. (9)

Note, however, that unlike Eq. (7), Eq. (9) cannot cur-
rently be justified rigorously. Instead, it is derived em-
pirically from the numerical results. The quality of its
asymptotic description is displayed in Fig. 1(b) where
the axes have been manipulated so that W00 is a straight
line if Eq. (9) holds. Moreover, by replacing sech2(rij/r0)
in Eq. (8) by exp[−(rij/r0)

2] and by unity, we have found
that W00 from Eq. (9) is universal. That is, β is inde-
pendent of the form of the short-range cutoff, but δ is
not. Equation (9) thus displays another departure of our
effect from Efimov’s since r0=0 and r0 6=0 have the same
asymptotic Wνν(R) in Efimov’s case.

While the R dependence of W00 in Eq. (9) is unusual,
its consequence for the number of three-body bound
states is clear: W00 falls off more slowly than 1/R2, mak-
ing it a long-range potential with an infinite number of
three-body bound states. Figure 1(a), which shows the
lowest several Wνν for the most attractive case α2=0,
also makes it clear that trimers produced by this effect
are going to be very weakly bound and very large — the
minimum in W00 lies at roughly R=7000r0. As α2 de-
creases, W00 becomes shallower, and the position of the
minimum moves towards even larger R.

Unfortunately, the R dependence of W00 in Eq. (9)
does eliminate the possibility of finding an exact result
like Eq. (6) for the three-body spectrum. But, given the
extremely slow variation of the numerator in Eq. (9) and
the fact that the hyperradial probability density is con-
centrated at the outer turning point, we can treat W00 as
a pure 1/R2 potential with a variable coefficient based on
the size of each state to find an approximate expression
for En. Replacing R in the numerator of Eq. (9) by 〈R〉n
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FIG. 2: (Color online.) (a) Comparison of the three-boson
bound state energies calculated from Eq. (2) (circles) and
from Eq. (10) (triangles). The lines are added to guide the
eye. (b) Fits of the potential parameters β and δ from Eq. (9):
symbols denote individual fits of Eq. (9) to the numericalW00;
and solid lines, fits of Eq. (11) to these values.

and using Eq. (6), we find for n≫1

En+1/En = exp

(

− 2π

[(β ln 〈R〉0
r0

− β
2
lnEn

E0

)1/2− 1
4
]1/2

)

(10)

having neglected δ relative to β ln(R/r0).
Figure 2(a) compares the three-body spectrum given

by Eq. (10) with the energies calculated by solving Eq. (2)
numerically using the potential given by Eq. (9) cut off
by a hard wall at R=100r0. The agreement between the
two is quite good, especially given that the energy scale
covers 60 orders of magnitude, underscoring the value of
Eq. (10) since calculating many these states numerically
is actually quite challenging. The β used in Fig. 2(a)
were determined by fitting the empirical expressions

β = aβ exp(bβα
2) + cβ, −δ = aδ exp(bδα

2) + cδ. (11)

to the numerical data as shown in Fig. 2(b).
An infinity of three-body bound states thus exists at

α2=0, and Fig. 2(b) shows that an infinity also exists
for some negative α2. Figure 2(b) further shows that β
crosses zero at a critical value α2

c that can be determined
from Eq. (11) to be α2

c≈–0.0072, However, due to the
difficulty in solving Eq. (3) numerically to the large dis-
tances required to identify the asymptotic behavior — at
least R=109r0 near α2

c — this critical value should be
treated as an approximate upper bound. The true value
of α2

c may be even more negative. We have thus found
an infinite number of three-body states for a range of α2

where no two-body states exist.
We summarize the behavior of the three-body spec-

trum discussed so far in the α2<0 portion of Fig. 3(a). At
α2=α2

c , an infinite number of three-body states appears
with energies given by Eq. (10). At α2=0, an infinite
number of two-body states emerges — only the lowest of
which is indicated in Fig. 3(a) for simplicity.
Before considering the α2>0 behavior, let us revisit

the zero-range two-body potential in Eq. (5). The theo-
retically attractive fact that R can be exactly separated
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FIG. 3: (Color online.) (a) The lowest four three-body ener-
gies calculated from Eq. (2) for W00 from Eq. (8) with a hard
wall added at R=100r0. The dashed line denotes the lowest
two-body threshold. (b) Schematic three-body binding ener-
gies assuming there is a deeply-bound two-body state whose
energy is independent of α.

in the Schrödinger equation begs the question: what are
the α2

ν in Eq. (7)? It turns out that Eq. (9) at a fixed
R provides the answer. In the limit r0→0, the numer-
ator — proportional to α2

0 — diverges. This conclusion
is supported by taking the limit numerically for various
regularization schemes. While this divergence is a bit
disappointing, it is also interesting in its own right as
a novel three-body “fall-to-the-center” problem that oc-
curs even when there is no divergence in the two-body
problem.
Returning to Fig. 3(a), we see that the three-body en-

ergies connect smoothly across α2=0. The nature of the
spectrum, however, changes. For α2>0, the three-body
system can break up into a dimer and a free particle
when R→∞. The leading term in Wνν is then given by
the sum of the two-body interactions between the free
particle and each of the particles in the dimer. Thus, the
asymptotic form for the JΠ=0+ three-body potentials is

Wνν → Evl −
α2
eff + 1/4

2µR2
~
2, (12)

where Evl is the energy of a two-body vibrational state
v with orbital angular momentum l and

α2
eff =

8

3
α2 +

5

12
− l(l + 1). (13)

Note that to have JΠ=0+, l must also be the orbital
angular momentum of the free particle relative to the
dimer. We have verified Eq. (12) numerically for the
two-body potential in Eq. (8).
For s-wave dimers, Eq. (13) shows that for each two-

body bound channel, the interaction in Eq. (12) is al-
ways supercritical when α2>0. An infinite number of
three-body bound states thus lie in the hyperspherical
potential asymptoting to E00 with energies relative to
E00 given by Eq. (6) after replacing α by αeff . But, there
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are also an infinite number of three-body resonances at-
tached to each of the excited two-body thresholds Ev0

whose energies relative to their respective threshold are
also given approximately by Eq. (6).
For larger values of α2, it is possible to have an infinity

of two-body dimers with l>0. In particular, when l0(l0+
1)<α2≤(l0+1)(l0+2), the effective two-body potential,
including the centrifugal barrier, is supercritical for l≤l0.
Equation (13) shows that so long as α2 is supercritical for
a given l, α2

eff will also be supercritical. In other words,
there will be infinite series of states attached to every
two-body threshold. While the energies of all of these
series relative to Evl are given by Eq. (6), note that αeff

in Eq. (13) does depend on l.
To this point, we have assumed that the short-range

modification of the two-body potential only makes it
shallower, thus preserving the property that no two-
body states exist for α2≤0. This assumption is conve-
nient for establishing the characteristics of the system
but is certainly not necessary. If we now allow short-
range modifications that support deeply-bound two-body
states, then by the arguments above, it is clear that
Eq. (12) will also apply for α2 < 0. Because these deeply-
bound two-body states are independent of α, Eq. (13) im-
plies a new critical value for α2 determined from α2

eff=0:
α2
D=3l(l+1)/8−5/32. The spectrum of these three-body

states is given by Eq. (6), and they will coexist with
those states from the higher channel given by Eq. (10).
We show the lowest few states of the three-body spec-
trum attached to this deeply bound two-body threshold
in Fig. 3(b). There will be a similar spectrum for each
deeply bound two-body state.
A natural question to ask is whether the effect we have

described occurs for other systems such as three identical
bosons with J>0, different mass particles, or even com-
binations of identical fermions. Since the latter seems to
have some relevance to the work recently published in
Ref. [15], we will focus on it.
We have calculated Wνν numerically for three indistin-

guishable, spin-polarized fermions interacting via Eq. (8).
In this case, we study the symmetry JΠ=1+ since it gives
the lowest potential in the non-interacting case [23]. The
lowest two-body angular momentum satisfying the sym-
metry constraints is l=1, implying that α2 can be as large
as 2 without having a two-body bound state. Having ex-
amined W00 for several α2<2, we have empirically found
that the asymptotic behavior of W00 is

W00(R) → −α2
eff + 1/4

2µR2
~
2 − γ

2µ ln(R/r0)R2
~
2. (14)

For α2=2, we have obtained α2
eff=5.24 and γ=4.19 by fit-

ting Eq. (14) to our numerical potential. Therefore, our
effect does occur: the three-fermion system has an infi-
nite number of three-body bound states — in the absence
of two-body bound states — with a spectrum given ap-
proximately by Eq. (6). Note that even though our effect

shares the same spectrum as the Efimov effect, it exists
in a 1+ system of identical fermions where the Efimov
effect does not [24, 25].
Based on these results, we believe that our effect might

better explain the four-body states recently found by
Castin et al. [15] than does the Efimov effect. Castin
et al. considered a system of three heavy, spin-polarized,
identical fermions H plus a fourth lighter particle L, as-
suming the only interactions were contact potentials be-
tweenH and L. Upon setting theH+L s-wave scattering
length aHL to infinity, they found a supercritical 1/R2 in-
teraction for 13.384≤mH/mL≤13.607 — if the Hs had
1+ symmetry.
To connect with our effect, we can approximately re-

duce their four-body problem to an effective H+H+H
problem by integrating out the L motion via the Born-
Oppenheimer approximation [26]. The resulting Born-
Oppenheimer surface for most configurations of the three
Hs can be well-approximated as a sum of H+H pair po-
tentials. Since aHL=∞, Efimov’s analysis tells us these
pair potentials behave as 1/r2 [13]. We thus have a three-
body problem with attractive 1/r2 interactions — i.e.

the focus of this Letter.
Equation (14) shows that, unlike the bosonic case, we

can take the limit r0→0 for fermions to match the as-
sumptions in Ref. [15], leaving just the first term in
Eq. (14) in agreement with Eq. (7). For α2=2, corre-
sponding to mH/mL=13.607, we thus obtain for α2

0 from
Eq. (7) the supercritical value of 5.24. Reducing α2 un-
til α2

0 is zero gives α2≈1.6 — the fermion equivalent of
α2
c found for bosons above. Remarkably, we have thus

found an infinity of three-body bound states when the
effective two-body potential (including the centrifugal
term) is repulsive! Using the zero-range model [13, 17],
we can convert this to a mass ratio of mH/mL=11.58,
implying that an infinity of 1+ three-fermion bound
states — in the absence of two-body states — exists for
11.58≤mH/mL≤13.607.
It is clear that our range of mass ratios and values of

α2
eff do not quantitatively match those from Ref. [15].

One of reasons for these quantitative differences is likely
the fact that mH/mL is only roughly 10, reducing the
reliability of the Born-Oppenheimer approximation. An-
other likely reason for the difference is the approximation
of the Born-Oppenheimer surface as purely a pair-wise
sum of 1/r2 interactions when simple arguments suggest
that the surface is less attractive for some configurations.
Nevertheless, we think our explanation of the infinity of
states from Ref. [15] is compelling. And, while they could
not exist without the Efimov physics of the H2L system,
they are not themselves Efimov states for all of the rea-
sons we have discussed.
In summary, we have found a new class of three-body

states: when three particles interact via attractive 1/r2

potentials, they can have an infinite number of three-
body bound states even when there are no two-body
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bound states. This effect occurs for both 0+ identical
bosons and 1+ identical, spin-polarized fermions — and
almost certainly for many other cases as well. For iden-
tical bosons, this effect produces a unique three-body
spectrum and a new kind of three-body fall-to-the-center
problem. For identical, spin-polarized fermions, this ef-
fect sounds especially surprising since it occurs when
the effective two-body interaction is completely repul-
sive. Moreover, this effect still occurs when there are
two-body bound states. While these states do share some
characteristics with Efimov states, their physical origin
is quite distinct. We use this distinctiveness to argue
that the recently-found four-body “Efimov” states are, in
fact, “our” states — arguments that seem likely to apply
equally well to even larger numbers of particles. Finally,
we note that our discussion of the Born-Oppenheimer
treatment of the H3L system suggests an avenue to ex-
perimentally realizing attractive 1/r2 two-body interac-
tions by tuning aHL to infinity.
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H.-C. Nägerl and R. Grimm, Nature (London) 440, 315
(2006).

[6] S. Knoop, F. Ferlaino, M. Mark, M. Berninger, H.
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