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The Born-Oppenheimer approximation is the keystone for molecular dynamics simulations of radiation dam-
age processes, however, actual materials response involves non-adiabatic energy exchange between nuclei and
electrons. In this work, time dependent density functionaltheory is used to calculate the electronic excitations
produced by energetic protons in Al. We study the influence ofthese electronic excitations on the interatomic
forces, and find that they differ substantially from the adiabatic case, revealing a non-trivial connection between
electronic and nuclear stopping that is absent in the adiabatic case. These results unveil new effects in the early
stages of radiation damage cascades.

When an energetic particle collides with a solid target it de-
posits energy on the nuclei and on the electrons of the host
material. For particle velocities below the Fermi velocityof
the target, nuclear and electronic stopping are both relevant,
and the result of the interaction is a collision cascade[1].A
full understanding of these early stages of radiation damage
provides knowledge and tools to manipulate them to our ad-
vantage, not only on materials for nuclear applications, but
also for materials related to the space industry, novel process-
ing techniques using lasers and ions, and the large field of
assessing the effects of radiation on living tissues, both for
understanding damage and for therapeutic use.

Within the condensed matter community, and since the pio-
neering speculations about the multiple effects that a collision
cascade produced by an energetic particle would introduce in
a solid target [2], the interest in knowing in detail the com-
plexity of this highly non-equilibrium process has fueled a
huge amount of research, both experimentally and by using
computer simulations aiming at understanding radiation dam-
age in matter [3].

During the 80’s, the advent of powerful computers allowed
R. S. Averback and collaborators to study, for the first time,
the radiation damage on a target with a number of atoms large
enough to contain the main stages of collision cascades [4].
This early work unveiled the transition from ballistic to ther-
mal phase of the cascade and the liquid-like nature of the latter
when significant damage recovery occurs as it quenches down.
Simultaneously, the development of a series of many-body
classical interatomic potentials [5, 6] allowed to reproduce in
detail and at low computational cost a number of properties

of solid targets, in particular the energetics of perfect and de-
fected crystals, elastic constants, and thermodynamic proper-
ties such as melting temperature and latent heat; all contribut-
ing to increase knowledge of the properties of the damaged
state of the target. These works, however, lacked an essential
component, namely the dynamic response of the electrons to
such a large perturbation. This is because the majority of ra-
diation damage research in material science was done within
the Born-Oppenheimer (BO) or adiabatic approximation [7],
where electrons adjust instantaneously to moving nuclei, com-
pletely ignoring their dynamics. The BO approximation is the
keystone to the atomistic molecular dynamics (MD) simula-
tions, with both ab initio or empirical interatomic force fields.
From the early days of the MD approach to describe radiation
damage till now, authors noticed the practical necessity togo
beyond this approximation, ranging from collision cascades
[8–17] and rapid shocks [18] to current-induced forces [19].

In parallel, the electronic structure community has been
studying the problem of electronic stopping power (Se), where
the quantum mechanical nature of the electronic response is
taken into consideration through different levels of approx-
imation, ranging from Thomas-Fermi[20], shell models[21],
Hartree-Fock[22], Density Functional Theory (e.g. for theho-
mogeneous electron gas[23, 24], within the linear dielectric
response approximation[25]), to semiclassical nonadiabatic
atom-atom collisions (e.g. using Firsov’s model[26, 27]).The
main focus of this community is on the projectile energy-loss
mechanism through the electronic system.

Electronic stopping is one of the components of the entire
process; there are other two elements equally important fora
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complete picture of a radiation damage event, which are be-
yond the scope of this Letter: (1) As electrons get energy from
projectiles via stopping, they become excited and this energy
is spread by transport processes until it eventually becomes
electronic thermal energy. (2) The electron-phonon interac-
tion is responsible for the recovery of thermal equilibriumbe-
tween the nuclear an the electronic subsystems.

Hybrid models combine different aspects of the problem in
an ad hoc manner; these include two-temperature models[8,
9], phenomenological stopping based in the local density[10],
collective excitations in a Coulomb explosion[11–14] and
thermal spike approaches[8, 9, 15, 16]. Perhaps the most so-
phisticated approach at present is the extension of Ref. [10] to
include the electronic component as a classical field coupled
to the nuclei via heat transport equations[17].

The aims of this Letter are to interconnect the two, so-far
disconnected, aspects of the same process, the electronic and
nuclear loss mechanisms via ab initio simulations that take
into account the electron dynamics of the system, and to de-
pict what happens to the nuclei when the electrons are excited
by a fast moving particle in the target material.

In this work we apply the formalism of Time Dependent
Density Functional Theory (TDDFT) to model the electron
dynamics in the first stages of the energy deposition. We
analyze the ability of the method to calculate the electronic
stopping power (Se) for metals, comparing the accuracy of the
simulation results with those contained in the the SRIM (for-
merly TRIM) database [28, 29] for the case of H in Al. We
also analyze the nature of the time dependent forces experi-
enced by the atoms as the projectile moves along its trajec-
tory. Our work follows that of Pruneda and others on non-
adiabatic dynamics in insulators[30, 31], but unveils one of
the most fundamental consequences of the non-adiabaticityof
the electron-nuclear system, namely the modification of the
interatomic forces that result from the perturbation of theelec-
tronic system.

The main simulations consist in forcing the movement of
a projectile (proton) in the metallic bulk, which mimics a
highly energetic particle as it enters the material. Calcula-
tions are performed using SIESTA [32], modified [33] to im-
plement the solution of Time Dependent Kohn-Sham (TDKS)
orbitals via a semi-implicit Cayley form integrator [34] (also
called Crank-Nicholson[35]). Kohn-Sham electron orbitals,
expanded in a local polarizable (double-zeta plus polariza-
tion or DZP) basis around the atoms (including the projectile
atom), are evolved in time with a self consistent Hamitonian
that is a functional of the density. The LDA functional is used
for the presented Al calculations [36]. To augment the basis
we also include a dense set of manually added (ghost) hydro-
genic orbitals around the projectile’s trajectory.

We use a periodic cell with 64 host Aluminum atoms plus a
proton, represented by a Troullier-Martins pseudopotential (3
valence electrons per Aluminum atom are explicitly consid-
ered) and a 2x2x4 k-point grid to sample the Brillouin zone.
The density is sampled with a 150 Ry mesh cut-off.

We perform the TDDFT calculation on the electronic sys-
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FIG. 1: Proton in Aluminum: Total (Kohn-Sham) Energy increase
as a function of position for different proton projectile velocities.
Lattice atoms are fixed as its equilibrium positions while projec-
tile passes in a〈100〉 channelling trajectory at velocityv. The aver-
age stationary slope (determined for projectile positionslarger than
∼ 5 a0) is used to calculate the stopping power (Fig. 2).

tem at given time-dependent nuclear positions, under two sim-
plifying assumptions: (i) the host (target) atoms are fixed in
the equilibrium positions and (ii) the projectile is subject to a
rectilinear uniform movement along a channeling〈100〉 tra-
jectory (that maximally avoids collisions with the host atoms)
and also off-center channeling trajectory (that is, parallel to
channeling but half way towards a row of host atoms in or-
der to assess sensitivity to the perfect channelling conditions).
The initial condition of the electronic system is taken to be
that of the ground state with a projectile at the initial posi-
tion. The time step of the TDDFT simulation is chosen to be
inversely proportional to the velocity of the projectile, such
that the spatial resolution on the projectile position is constant
among simulations at different velocities. The time step is
always below 3 attoseconds, which is the stability limit for
the numerical time-integration scheme with the chosen type
of basis set.

Under these conditions, the externally forced movement
of the projectile (assumed to have some constant veloc-
ity/momentum) will produce an overall increase on the total
energy. After the projectile covers some distance, the total
energy of the system increases at steady rate (apart from os-
cillations) and therefore a stationary state is reached (Fig. 1).
The oscillations reflect the periodicity of the Al lattice.

The slope of total energy vs. projectile position gives the
non-conservative force that, in the real system, would be as-
sociated with energy loss of the projectile, or equivalently,
the energy gained by the target. The above assumptions (i)
and (ii) are justified for a channeling orientation since during
the short simulated time (relative to the nuclear motion), the
position of the host atoms in the supercell would move in-
significantly, and also because the relative velocity change of
the projectile would be negligible. In addition, this method
of calculating the stopping is consistent with the definition of
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FIG. 2: Proton in Aluminum stopping power: average stopping
power (Se) vs. projectile velocityv for a channeling trajectory
(pluses) and for an off-center channelling trajectory parallel to the
former (crosses). Continuous line refers to the nominal tabulated re-
sult from the SRIM/TRIM database [28, 29], whose multiple fitting
data sources have a spread of∼ 10% [39].

electronic-onlystopping power (i.e. as a separate contribution
from the nuclear stopping, dominant at low projectile veloci-
ties).

Fig. 2 shows electronic stopping power versus proton ve-
locity, together with SRIM data. The results are also consis-
tent with the analysis provided by velocity-dependent poten-
tials in Ref. [37]. For the channeling direction, the prediction
is below SRIM data; this result is in part expected for vari-
ous reasons. Firstly, the projectile passes through the center
of the channel. Secondly, in our simulations we only con-
sider explicitly valence electrons, leading to an underestima-
tion abovev ∼ 2.5− 3a.u.. An additional factor might be
the use of a local (in time) exchange-correlation functional,
as retarded exchange-correlation effects are know to create
additional frictional forces, as analyzed for low velocities in
Ref. [38]. As expected, a parallel off-center channeling tra-
jectory increases the value of stopping, bringing it in better
agreement with the SRIM data. The unavoidable basis-size
and finite-system-size effects introduce additional deviations
(v∼ 0.5−1a.u.) which, however, do not affect the main con-
clusions of our work. Taken into account the limitations men-
tioned, these results show the power of the TDDFT technique
to accurately reproduce electronic stopping power in realistic
systems.

Now we turn to the relationship of these results with the
radiation damage problem. Ever since the beginning of the
large-scale computer simulations of radiation damage, a great
interest was devoted to the analysis of the differences be-
tween Coulomb explosion and thermal spike induced by swift
(heavy) ions in the metals. (For a review, see [3].) There are
two ways to analyze this phenomenon, the band picture and
the ionization picture.

In the band picture, when electrons are excited in a metal,
the band contribution to the cohesive energy decreases due to

the population of anti-bonding states, while the nuclear plus
core Coulombic repulsion remains unchanged, giving rise toa
net repulsion between the nuclei. For a swift projectile creat-
ing an ion track, this gives rise to a collective radial-out force
of host nuclei along the track. In the ionization picture, elec-
trons are ejected away from the atoms close to the projectile
trajectory, creating positively charged ions.

The Coulomb explosion model then considers that the
potential energy is subsequently converted into atomic
motion[11–14]; this conversion depends on the lifetime of the
space charge, which is governed by the response time of the
electron gas in the system, roughly the inverse of the plasma
frequency (∼ femtoseconds). In spite of this short duration,
the ionized atoms located around the projectile trajectoryac-
quire kinetic energy, which could reach several eV. This co-
herent (in space and time) transfer of energy can have no-
ticeable effects; as it results in (1) the generation of a shock
wave that may favor phase transformations in materials with
allotropic forms and/or (2) a strong excitation of soft phonon
modes. If soft modes are present, large amplitude displace-
ments may be induced even with relatively small energies,
thus favoring disorder and defect formation.

The energy transfers per atom involved in the Coulomb ex-
citation process are much smaller than the standard threshold
energy necessary to induce damage creation in binary elas-
tic collisions, but due to the collective and coherent aspects
of the process, the usual displacement energy threshold con-
cept becomes inadequate. Molecular dynamics simulations
have shown that lattice defects are, indeed, created when small
amounts of kinetic energy are collectively given to the atoms
located inside a cylindrical region around the projectile path.
The energy deposition in electronic excitations, first, andthe
resulting damage, later, are strongly localized along the ion
path, creating a particular damage pattern: the ion track[16].

In either picture (band or ionization), the relevant physical
quantity to obtain is the force that the host nuclei are sub-
jected to while the projectile moves in the system, especially
those nuclei near the trajectory. From the point of view of
the nuclei, viewed as a classical subsystem, the force is non-
adiabatic since it depends on the history of the system includ-
ing the electrons, which are continuously excited by the mov-
ing projectile. Therefore, the force will depend on the velocity
of the projectile and time. Only when the projectile moves in-
finitely slow (effectivelyv<∼ 0.2 a.u. , see below) the so-called
adiabatic forces are indeed recovered.

Figure 3 shows the radial force on an Al target atom clos-
est to the H projectile’s trajectory as a function of position
of the proton along its trajectory for different projectileve-
locities. The forces on the nuclei are calculated from the in-
stantaneous (time-dependent) electron density as it wouldbe
obtained by expanding the Hellman-Feynman formula (but in
this case, not applied to the ground state). At zero velocitywe
recover the adiabatic force, symmetric with respect to the H-
Al distance with its maximum value at the closest approxima-
tion. As velocity increases, the shape of the curves acquires a
complex structure that shifts the position of the maximum and
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FIG. 3: (color online) Proton in Aluminum: Radial force exerted on
host atom (first neighbor to channel trajectory) vs. parallel distance
to projectile at different projectile velocitiesv; x = 0 is the point
of maximum proximity. The non-adiabatic curves have been shifted
vertically for visualization purposes, but they all start with zero force.

eventually develops oscillations.
Above certain velocity and after the projectile passes, per-

sistent oscillations of the force on the host atom appear in
the simulation; the frequency of these oscillations is roughly
∼ 0.8−0.9 Eh/h̄ as given by simple Fourier analysis. This
frequency can be compared to∼ 0.81Eh/h̄ (at Brillouin zone
border), of the natural plasma frequency of Aluminum as cal-
culated via methods within the same density functional frame-
work [40]. This is consistent with the picture that only at high
projectile velocities, plasmons (at finite excitation momentum
q) can be produced, and that these natural density oscillations
persist with time. (Although, in this case, the persistenceis
enhanced by the periodic boundary conditions.)

To analyze the net effect of the forces on the host atoms, we
evaluate the momentum transfer, as the integral of the force
over distance, divided by the projectile velocity (v) (or equiv-
alently as the integral of the force in time).

∆p =

∫
F(x(t))dt =

∫
F(x)dx/v (1)

When the initial thermal momentum of the target atom is
small, the momentum transfer can be used to estimate the en-
ergy transfer to the target. When this is not the case, a full
nuclear stopping cross section calculation is needed. Results
in Figure 4 on log-log scales show that for low velocities, up
to about a tenth of the velocity corresponding to the maximum
stopping (∼ 1.5 a.u. , from Fig. 2), the adiabatic approxima-
tion gives a good description of the momentum transfer, being
proportional to 1/v, up to 0.3 a.u.. However, as we approach
the maximum on electronic stopping, a transition into a new
regime is clearly seen where the momentum transfer passes
through a minimum and goes into a plateau. This momentum
transfer for high velocity (in a range of velocities from 0.3 to
2.0 a.u.) translates into an almost constant initial momentum
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FIG. 4: Proton in Aluminum: Radial momentum transferred to host
atom vs. projectile velocity. The momentum transfer is calculated as
the time integral of the force∆p⊥(v) =

∫
F⊥

v (t)dt =
∫

F⊥
v (x)dx/v.

At low velocity it tends to∆p⊥(v→ 0) =
∫

F⊥
adiabatic(x)dx/v.

change per target atom near the channel, independent of the
projectile velocity, that can be several times the one that the
adiabatic approximation will predict. This constitutes a coher-
ent, uncompensated radial transfer of momentum. (From gen-
eral arguments –see e.g. Landau & Lifshitz’s [41] discussion
of momentum transfer in classical collisions– one expects a
recovery of the∆p∼ 1/v behavior at even higherv. It is how-
ever for velocities beyond the scope of this work.)

The effect described is neither equivalent to a thermal spike
(random momentum gain) nor to a Coulomb explosion (atoms
here are neutral and the origin of the force is not Coulombic
between ions).

As far as we are aware, this result is new and provides a
first principles calculation of the strength of the non-adiabatic
effects on the distribution of the energy losses by an energetic
projectile. Similar to the Coulomb explosion, this momen-
tum transfer is radial outwards. However, it is not related to
the ionization of the target atoms close to the projectile veloc-
ity, but rather to the loss of the ability of electrons to provide
chemical bonding as they become excited; an effect that starts
to appear at velocities around 0.3 a.u., i.e. well below the
maximum ofSe(v) at 1.5 a.u., for the case of protons in Al.

These are the first steps towards the development of a
unified first-principles simulation framework of the electron-
nuclear radiation damage problem, showing that it is feasi-
ble to include both the nuclear and electronic aspects of the
problem. The implications for more accurate computer sim-
ulations of radiation damage are important. Recent work on
band structure effects on the existence of a threshold velocity
for the set up of electronic stopping (LiF, ices, etc.)[30, 31]
together with these results for high velocities, highlightthe
limitations of the adiabatic and Langevin dynamics approxi-
mations and point towards the need of incorporating tractable
forms for non-adiabatic effects into computer simulationsof
radiation damage in solids.
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