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We demonstrate spectroscopy and thermometry of individual motional modes in a mesoscopic 2D
ion array using entanglement-induced decoherence as a method of transduction. Our system is a
∼400 µm-diameter planar crystal of several hundred 9Be+ ions exhibiting complex drumhead modes
in the confining potential of a Penning trap. Exploiting precise control over the 9Be+ valence electron
spins, we apply a homogeneous spin-dependent optical dipole force to excite arbitrary transverse
modes with an effective wavelength approaching the interparticle spacing (∼20 µm). Center-of-mass
displacements below 1 nm are detected via entanglement of spin and motional degrees of freedom.

PACS numbers: 52.27.Jt, 52.27.Aj, 03.65.Ud, 03.67.Bg

Studies of quantum physics at the interface of micro-
scopic and mesoscopic regimes have recently focused on
the observation of quantum coherent phenomena in op-
tomechanical systems [1–3]. The realization of quan-
tum coherence in mechanical oscillations involving many
particles behaving approximately as a continuum pro-
vides exciting insights into the quantum-classical tran-
sition. Previous work has shown that crystals of cold,
trapped ions behave as atomic-scale nanomechanical os-
cillators [4–6], with the benefits of in-situ tunable mo-
tional modes and exploitable single-particle quantum de-
grees of freedom (e.g. valence electron spin). Our system
of hundreds of crystallized ions in a Penning trap provides
a bottom-up approach to studying mesoscopic quantum
coherence. In this context, the relevant particle numbers
are sufficiently small to permit excellent quantum control
without sacrificing continuum mechanical features. Be-
yond these capabilites, trapped ions have long provided
a laboratory platform for studying diverse physical phe-
nomena including: strongly-coupled one-component plas-
mas (OCPs) [7, 8]; quantum computation [9, 10] and sim-
ulation [11–15]; dynamical decoupling [16]; and atomic
clocks and precision measurement [17].
In this Letter, we present an experimental and theoret-

ical study of motional drumhead modes in a 2D crystal
of 9Be+ ions confined within a Penning trap. We ex-
cite inhomogeneous modes of arbitrary wavelength (see
Fig. 1(a)) through application of a homogeneous, spin-
state-dependent optical dipole force (ODF) to a large-
scale spin superposition. Distinct drumhead modes are
entangled with the 9Be+ valence electron spins by tun-
ing a beat frequency (µR) between two ODF lasers near
a mode resonance. This spin-motion entanglement is de-
tected as a µR-dependent decoherence of ion spins whose
magnitude conveys the specific mode temperature.

Previous global mode studies on 2D planar ion ar-
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FIG. 1: (color online) (a) Calculated structure of selected

transverse eigenmodes (~bm) for a 2D crystal of 331 9Be+

ions. Mode frequencies, ωm, decrease as effective wave-
length gets shorter. The arbitrary color scale indicates rel-
ative ion displacement amplitude. One example of an ion
spin state with similar symmetry is given below each of the
four highest-frequency eigenmodes. The symbol ×(•) denotes
spin-projection into (out of) the plane. Interaction between
these spin and mode configurations mediated by the spin-
dependent optical dipole force (ODF) leads to excitation of
the corresponding eigenmode. (b) Illustration of a single
plane of 9Be+ within the Penning trap. Two 313-nm beams
intersect at the ion cloud to form a traveling wave of beat

frequency µR and effective wavevector
−→
∆k along the direc-

tion of the trap magnetic field. The electric field intensity
is uniform in the plane, but the spin-dependent induced AC
Stark shift permits excitation of transverse modes of arbitrary
wavelength.
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rays were restricted to modes with wavelengths on the
order of the cloud size [18–22]. By contrast, the short-
wavelength modes studied here are of particular interest
due to their increased sensitivity to strong-correlation
corrections [23, 24] compared to those with long wave-
length, which are well-described by fluid theory. Ther-
mometry of large Coulomb crystals has thus far been
limited to determination of global temperature through
Doppler profile measurements [25], which give a mini-
mum sensitivity of ∼0.5 mK in 9Be+. Our temperature
measurement is mode-specific and may be employed be-
low the Doppler cooling limit, providing an alternative
to Raman sideband thermometry [26].
The Penning trap used for this work is detailed in

a previous publication [27]. Application of static volt-
ages to a stack of cylindrical electrodes provides har-
monic confinement along ẑ (the trap symmetry axis)
with a 9Be+ center-of-mass (COM) oscillation frequency
of ω1/2π = 795 kHz that is independent of the num-
ber of trapped ions. The trap resides within the room-
temperature bore of a superconducting magnet, and ra-
dial confinement is achieved via the Lorentz force gener-
ated by rotation of the ion cloud through the static, ho-
mogeneous magnetic (B) field of ∼4.46 T oriented along
ẑ. Application of a time-dependent quadrupole ‘rotating
wall’ potential permits phase-stable control of the rota-
tion frequency (ωr), and thus the confining radial force of
the trap [28, 29]. In the limit of a weak rotating wall po-
tential, the harmonic trap potential in a frame rotating
at ωr is [8]

qΦtrap(r, z) =
1

2
Mω2

1

(

z2 + βr2
)

, (1)

β =
ωr(Ωc − ωr)

ω2
1

−
1

2
(2)

where M (q) is the mass (charge) of a single 9Be+,
Ωc = 2π × 7.6 MHz is the cyclotron frequency, and z
(r) is axial (radial) distance from the trap center. We set
the rotation frequency, ωr, such that the radial confine-
ment is weak relative to transverse confinement (β ≪ 1),
resulting in a single ion plane.
The mJ = ±1/2 projections of the Be+ 2S1/2 ground

state are split by ∼124 GHz and serve as | ↑〉 and | ↓〉
‘qubit’ states, respectively. Global spin rotations are per-
formed by injecting 124-GHz radiation through a waveg-
uide attached to the side of the trap. The 9Be+ ions
are Doppler laser cooled with laser beams directed both
parallel and perpendicular to ẑ. Both beams are tuned
to the 2S1/2(mJ = +1/2)–2P3/2(mJ = +3/2) transition
at ∼313 nm to cool ion motion below 1 mK. This same
transition is used for ion detection and projective spin-
state measurement. Discrimination of |↑〉 (bright) from
|↓〉 (dark) is performed with a fidelity > 99% [27].
The axial and radial confining potentials are tuned

to yield a planar ion configuration. Due to mutual
Coulomb repulsion and the low ion temperature, the ions’
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FIG. 2: (color online) (a) Pulse sequence used for excitation
and detection of transverse motional modes. Global spin rota-
tions are performed with microwaves at ∼124 GHz, while the
state-dependent optical dipole force is applied in each arm of
the spin echo for a duration τ . We implement π-pulse times
(tπ) as short as 65 µs. (b) Measured (points with statistical
error bars) and fit (solid blue line) probability of detecting
| ↑〉 (P↑) at the end of the spin echo sequence. Frequency-
dependent decoherence is due to entanglement of spins with
the axial COM mode (ω1/2π = 795 kHz) as a function of
ODF detuning δ1 ≡ µR − ω1 in a cloud of 190± 8 ions. Each
point is an average of 90 experimental runs. The fit provides
a mode temperature of 2.3 ± 0.5 mK, whose error includes a
5% uncertainty in ODF beam angle, θR. For comparison, the
lower (upper) dashed line is calculated assuming 0.4 mK (4.0
mK). (c) Illustrated phase-space trajectories of state |↑〉N at
different detunings, δ1, in a frame rotating at ω1. Axis la-
bels represent COM momentum (pz ∝ Im[αj1]) and position
(z ∝ Re[αj1]).

minimum-energy configuration is a 2D crystal with trian-
gular order [30]. Ion spacing is ∼20 µm, and individual
ions can be resolved using stroboscopic imaging at ωr.
The planar array of N ions exhibits 3N motional modes,
N of which are drumhead oscillations transverse to the
crystal plane (see Fig. 1(a)). As with 1D ion strings,
the frequencies of these transverse modes decrease with
decreasing effective wavelength due to screening of con-
fining electric fields by nearby ions. The transverse eigen-
vectors (~bm, m ∈ [1, N ]) and corresponding eigenfrequen-
cies (ωm) are obtained by first numerically calculating
the zero-temperature 2D ion configuration in the pres-
ence of the Penning trap potentials. Applying a Taylor
expansion of the combined trap and Coulomb potential
about each ion equilibrium position, we diagonalize the
N×N stiffness matrix whose eigenvalues and unit eigen-
vectors are ωm and ~bm, respectively [31, 32]. The rela-
tive displacement amplitude of an ion j is given by the
jth element of ~bm, denoted as bjm, where

∑

m |bjm|
2
=

∑

j |bjm|
2
= 1.

To excite transverse modes in our 2D Coulomb crystal,
we employ a spin-dependent ODF generated by interfer-
ing two off-resonant laser beams at the ion cloud posi-
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tion. This is depicted schematically in Fig. 1(b). The
two ODF beams are produced from a single beam us-
ing a 50/50 beamsplitter and subsequently pass through
separate acousto-optic modulators that allow fast (∼1
µs) switching and impart a relative detuning µR. The
beams intersect at an angle of θR = 4.8◦±0.2◦ at the ion
cloud position, and their relative alignment is adjusted

to orient the effective wavevector (
−→
∆k) of the resulting

standing (µR = 0) or traveling (µR 6= 0) wave to within
∼ 0.05◦ of ẑ. The common wavelength (313.133 nm) and
unique linear polarizations of the beams are chosen such
that the AC Stark shift from the interfering beams on
state |↑〉 is equal in magnitude and opposite in sign to
that on |↓〉 [33]. The result of the interference between
these two beams is a spin-dependent force on each ion, j
(F↑,j = −F↓,j ≡ Fj). The Hamiltonian for this interac-

tion is ĤODF = −
∑N

j=1 Fj ẑj(t) cos (µRt)σ̂
z
j , where ẑj(t)

is the time-dependent position operator and σ̂z
j is the z-

component Pauli operator for ion j [14]. The elliptical
beam waists (100 µm×1000 µm, with the major axis ori-
ented parallel to the ion plane [33]) are sufficiently large
to generate an approximately uniform ODF with varia-
tion below 10% across the ∼400 µm-diameter planar ion
crystal. Typical ODFs for this work are Fj ∼ 10−23 N
along ẑ.
Figure 2(a) illustrates the experimental control se-

quence for microwaves (black line) and ODF lasers
(shaded regions) used to coherently excite transverse
modes of motion. Ions are first prepared in the ‘bright’
state |↑〉N ≡

∏N
j=1 |↑j〉 via optical pumping [27]. The se-

quence of microwave pulses in Fig. 2(a) comprises a spin
echo (SE) [34] that, in the absence of the ODF beams,
rotates the ions to the ‘dark’ state |↓〉N with >99% fi-
delity. The SE cancels low-frequency precession about
ẑ due to ODF laser intensity and magnetic field fluctu-
ations as well as microwave phase noise [16, 35]. The
spin-dependent ODF is applied in each arm of the SE for

a duration τ .

The initial microwave pulse rotates each spin by π/2

to produce the state
∏N

j=1
1√
2
(|↑j〉 − |↓j〉), which is a su-

perposition of all possible (2N ) spin permutations. Im-
portantly, it is the creation of this state that permits
subsequent excitation of arbitrary transverse modes with
our homogeneous, spin-dependent ODF. By tuning µR

near a mode of frequency ωm, the spin-dependent ODF
excites those components of the spin superposition with
approximately the same symmetry as the eigenvector ~bm.
A subset of these eigenvectors and associated spin states
are illustrated in Fig. 1(a). Depending on experimental
parameters, the spin states may be entangled with differ-
ent motional states at the end of the control sequence of
Fig. 2(a). Upon measurement of the spin state (perform-
ing a trace over the motion), entanglement is manifested
as spin decoherence that varies with µR. We observe this
as a decrease in the length of the spins’ Bloch vector and
a concomitant increase in the probability (P↑) of measur-
ing state |↑〉 averaged over all ions.

Figure 2(b) gives experimental and theoretical results
for a sweep of µR near the COM frequency, ω1, with
τ = 500 µs and δ1 = (µR − ω1). On resonance (δ1 = 0),
the pulse sequence leads to excitation (de-excitation) of
the COM mode in the first (second) arm. When the
product |δ1τ/2π| = l is a non-zero integer, each spin state
traverses l full loops in phase space over τ (see Fig. 2(c)).
At intermediate detunings, the spin and motion remain
entangled at the end of the pulse sequence, producing
the lineshape of Fig. 2(b). These motional excitations
are described by the spin-dependent displacement opera-
tor Û(τ) =

∏

j,m exp
[

(αjmâ†m − α∗
jmâm)σ̂z

j

]

[32, 33, 36],
where αjm(τ) is the coherently-driven complex displace-
ment amplitude for ion j of mode m, and â†m(âm) is the
creation (annihilation) operator for mode m. Accounting
for both arms of the pulse sequence, we obtain [33]

αjm =
Fjbjm

ℏ(µ2
R

− ω2
m)

√

ℏ

2Mωm

[

ωm(1 − cos φ) + iµR sinφ− eiωmτ {ωm [cos (µRτ) − cos (µRτ + φ)]− iµR [sin (µRτ)− sin (µRτ + φ)]}
]

,

(3)

where ℏ is Planck’s constant, Fj is the ODF magnitude
on ion j, and φ = (τ + tπ)(µR − ωm) accounts for phase
evolution of the ODF drive relative to that of the mode.

Although the coherently driven, spin-dependent dis-
placements (αjm) are independent of the initial motional
state (assuming Lamb-Dicke confinement [14]), the spin-
motion entanglement signal in Fig. 2(b) sensitively de-
pends on this initial state. This can be qualitatively un-
derstood in terms of the spatial structure of a harmonic
oscillator Fock state, |nm〉, of mode m. A state |nm〉 ex-
hibits n wavefunction nodes and therefore, as n increases,

a fixed spin-dependent displacement results in less wave-
function overlap between different spin components due
to the increasing spatial frequency of |nm〉 wavefunctions.
This leads to larger decoherence and greater displace-
ment sensitivity as the average mode occupation, n̄m,
is increased for a given mode. We fit the experimental
measurements in Fig. 2(b) using theory that attributes
a thermal state of motion to each mode m characterized
by mode occupation n̄m ∼ kBTm(ℏωm)−1 and tempera-
ture Tm. Neglecting spin-spin correlation contributions,

we find the probability P
(j)
↑ of detecting ion j in state |↑〉
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FIG. 3: (color online) (a) Measured (lower) and calculated (offset) probabilities for measuring |↑〉 after the spin echo sequence
as a function of ODF beat frequency for a sweep of µR over the first five transverse modes with 250±15 ions. The modes at ω2

and ω3 are split due to distortion of the ion cloud boundary by the rotating wall potential. Panels (b) and (c) give results of
wider sweeps with ωr/2π = 43.2 kHz and 44.7 kHz, respectively, in a crystal of 345± 25 ions. Frequency-dependent deviation
from P↑ ∼ 0.1 is due to spin-motional entanglement, while the background is due to spontaneous emission from the ODF beams.
The histogram (red bars) shown below each experimental curve depicts the density of calculated eigenmodes at the given ωr.
Histogram bins are 10 kHz wide and plotted with an arbitrary vertical scale. As described in Fig. 1(a), the highest-frequency
feature is that of the COM mode and the ∼50 lowest-frequency eigenmodes include nearest-neighbor ions oscillating out of
phase. Features at ωr and precise harmonics thereof (shaded in light green) are due to spin-motion entanglement with in-plane
degrees of freedom excited by the small (∼ 10−3Fj) component of ODF perpendicular to ẑ.

at the end of the pulse sequence to be [33]

P
(j)
↑

=
1

2

[

1− e−2Γτ exp

(

−2
∑

m

|αjm|2(2n̄m + 1)

)]

. (4)

Here Γ accounts for decoherence due to spontaneous
emission induced by the ODF lasers over the duration 2τ ,
and is responsible for the background level of P↑ ∼ 0.1 ob-
served in all experimental data presented here [37]. The
total detection probability P↑ is obtained by averaging

all P
(j)
↑ .

For interaction with the COM mode (bj1 = 1√
N
, ∀j ∈

[1, N ]), αj1 is obtained from Eq. (3) through measure-
ment of the ODF laser intensities [14] and trapped-ion
number, while Γ is determined from decoherence ob-
served with µR detuned far from any modes. As such,
the only parameter of Eq. (4) not measured directly is n̄1,
which is varied to fit experimental data as in Fig. 2(b),
where we obtain n̄1 = 60± 13 (T1 = 2.3± 0.5 mK).
We note that a detectable phase-space displacement is

obtained with a very small amplitude of |αjm|. For ex-
ample, in Fig. 2(b), the 20% decrease in the Bloch vector
at δ1τ/2π ⋍ ±1.4 corresponds to a spin-state-dependent
excitation of the COM mode with a mean excursion of
∼0.6 nm in each arm of the pulse sequence. This shift is
less than 0.2% of the wavefunction spread of a single ion
in the planar array. Our sensitivity to displacements im-
proves with increasing mode temperature provided that
the ODF is adjusted to avoid full decoherence (P↑ = 0.5)
at the detuning of interest.
Figure 3(a) shows the result of a sweep of µR over five

transverse modes and corresponding theory. The theo-
retical spectrum (offset for clarity) is generated assum-
ing T1 = 10 mK and Tm>1 = 0.4 mK, with T1 obtained
from a fit. The large COM temperature of Fig. 3(a) is

produced by quickly switching off the ẑ-oriented Doppler
cooling beam on a time scale of ∼2πω−1

1 . In this case,
sudden loss of radiation pressure from the cooling light
induces a COM oscillation amplitude of ∼50 nm that we
detect as an elevated n̄1. A more adiabatic reduction of
the cooling beam intensity yields n̄1 ∼ 26 (T1 ∼ 1 mK).
For modes other than the COM, we must additionally
calculate the bjm values for the trap potentials and ion
number in a given experiment. For these modes, we find
temperatures consistent with the Doppler cooling limit
of 0.43 mK.

To measure the full spectrum of transverse modes, we
repeat the sequence of Fig. 2(a) for 30 kHz ≤ µR/2π ≤
800 kHz with τ = 1 ms. With the exception of the
COM mode, the frequencies of the remaining N − 1
modes depend sensitively on our choice of crystal rota-
tion frequency, ωr [20]. Figures 3(b)-(c) show the result
of these experimental runs for ωr/2π = 43.2 kHz and
44.7 kHz, respectively. For this ion number of 345± 25,
the single-plane configuration is stable over the range
42.2 kHz . ωr/2π . 45.2 kHz. Histograms of calcu-
lated mode density versus µR/2π are plotted below each
experimental curve with an arbitrary vertical scale and
bin width of 10 kHz. The distribution of eigenfrequen-
cies narrows as ωr is decreased; weaker radial confine-
ment (see Eq. (2)) leads to lower ion densities and re-
duced screening of trap potentials, thereby moving the
frequency of the shortest-wavelength mode toward that
of the COM. This behavior is clearly visible in Figs. 3(b)-
(c). Additionally, we find quantitative agreement be-
tween the measured spectrum and that generated from
numerical calculation of the transverse eigenmodes under
the given experimental conditions, documenting coupling
to both short- and long-wavelength modes. The sharp
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features of Figs. 3(b)-(c) shaded in light green reflect ex-
citation of in-plane resonances at harmonics of ωr due
to a very small component of the ODF (∼10−3Fj) along
the ion plane. These spectral features may be reduced

through more careful alignment of
−→
∆k to ẑ, but their

strong response suggests an elevated motional tempera-
ture perpendicular to ẑ.
In summary, we have used entanglement of spin and

motional degrees of freedom to map the full transverse
mode spectrum of a mesoscopic 2D ion array. This
technique provides a tool for sensitively and accurately
measuring the temperature and displacement amplitude
of individual drumhead modes, facilitating identification
of mode-specific heating mechanisms and the resulting
non-equilibrium energy distributions. Coherent, spin-
dependent excitation of transverse modes is the basis for
engineering quantum spin-spin interactions with trapped
ions [11–14, 31, 32, 38, 39], making mode characterization
a critical element of such experiments. Future work will
include investigation of low-frequency in-plane modes at
frequencies smaller than ωr. A predicted subset of these
modes includes in-plane shearing motion whose restoring
force is due exclusively to strong correlations.
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