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An analytic description for the yield, P(p), of high-energy electrons ionized from an atom by a
short (few-cycle) laser pulse is obtained quantum mechanically. Factorization of P(p) in terms of
an electron wave packet and the cross section for elastic electron scattering (EES) is shown to occur
only for an ultrashort pulse, while in general P(p) involves interference of EES amplitudes with
laser-field-dependent momenta. The analytic predictions agree well with accurate numerical results.

PACS numbers: 32.80.Rm, 34.50.Rk, 42.50.Hz, 42.65.Re

The process of above-threshold ionization (ATI) by a
short (few-cycle) laser pulse is highly sensitive to the pa-
rameters of the pulse, whose vector potential A(t) (for
the case of linear polarization) may be parameterized as:

A(t) = ẑA(t), A(t) = f(t) sin(ωt+ φ), (1)

where f(t) is the pulse envelope (with its maximum at
t = 0), ω is the carrier frequency, and φ is the carrier-
envelope phase (CEP). The first ATI experiments with
CEP-stabilized short pulses [1] found a significant CEP-
dependence of the electron yield and differences in the en-
ergy extent of the ATI plateau for electrons with negative
and positive momentum projections p|| = p · ẑ = p cos θ.
More detailed measurements [2] found CEP-dependent
interference fringes (differing for electrons with p|| < 0
and p|| > 0) in angle-resolved ATI spectra produced by
different half-cycles of a few-cycle pulse. These pecu-
liarities have been confirmed by numerical solutions of
the time-dependent Schrödinger equation (TDSE) and
explained within the improved strong field approxima-
tion, in which the atomic potential U(r) is taken into
account perturbatively, in a Born-like approximation [3].
However, recent experiments [4] show that a perturba-
tive treatment of U(r) is inadequate to extract from ATI
spectra information on atomic dynamics, such as the
field-free differential cross section (DCS) for elastic elec-
tron scattering (EES) from the potential U(r). The phe-
nomenological factorization of the ATI yield in terms of
an electron wave packet (EWP) and the exact (non-Born)
DCS for EES [5, 6] is very useful for analyzing signatures
of atomic dynamics in ATI spectra. For a monochro-
matic field, this factorization was justified theoretically
in Ref. [7] [cf. also Ref. [8] in which this factorization was
introduced heuristically (as the authors state in a later
paper [9])]. For a one-dimensional zero-range potential
model, analytic derivations of the ATI yield for an ar-
bitrary shape of A(t) have been performed in Ref. [10]
using an adiabatic approach. However, the validity of

a factorized formula for the ATI yield for a short pulse
with stabilized CEP, suggested in Ref. [11], remains un-
justified theoretically, and is a challenge for theory.

In this Letter we present an analytic description of ATI
by a few-cycle, CEP-stabilized laser pulse. Our closed-
form analytic formulas show that the photoelectron yield,
in general, cannot be factorized into the product of an
EWP and the DCS for EES, but involves a sum of DCSs
with different (pulse shape-dependent) electron momenta
as well as interference between corresponding EES am-
plitudes. Only in the ultrashort pulse case (in which only
electrons ionized by a single optical cycle of the pulse con-
tribute significantly to the photoelectron yield) do our re-
sults reduce to factorized form. For the H and He atoms,
our TDSE results confirm the high accuracy of our ana-
lytic description of high-energy ATI plateau.

To describe ATI by a short laser pulse, we generalize
our analytic description of ATI plateau spectra produced
by a monochromatic field [7] in a way similar to that used
to describe harmonic generation by a short pulse [12].
The key idea is to consider first ATI by an infinite train
of short pulses (1) separated in time by T with T > τ ,
where τ is the duration of the single short pulse (1) whose
ATI spectrum we seek. Owing to the periodicity in time
of the pulse train, we can employ the quasistationary
quasienergy state approach [13] to obtain an ab initio

formulation for the differential n-photon ionization rates
Γ (pn) ≡ dΓ (pn)/dΩpn

in a periodic field of frequency
ωτ = 2π/T , where pn is the photoelectron momentum.
The total ionization probability for the period T is:

P = T Γ =
2π

ωτ

∑

n>n0

∫

Γ (pn)dΩpn
, (2)

where n0 is the minimum number of photons for ioniza-
tion from a bound state of energy E0 = −~

2κ2/(2m). In
the limit T → ∞ (ωτ → 0), the sum over n in Eq. (2) can
be replaced by an integral over the electron’s momentum
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pn ≡ p or energy E = p2/(2m). The result we obtain is:

P =

∫ ∫

P(p)dEdΩp,

where the doubly differential ionization probability,
P(p), for a single short pulse has the following form:

P(p) ≡ d2P

dEdΩp

= lim
ωτ→0

2π

~ω2
τ

Γ (p). (3)

For an electron in a short-range potential U(r), the
rate Γ (p) can be obtained (using time-dependent effec-
tive range theory [14]) in analytic form in the tunnel-
ing limit. This latter result can then be straightfor-
wardly generalized to the case of an active atomic elec-
tron, as in Ref. [7]. Our analysis shows that the ATI
amplitude A(p) for a short pulse can be presented as a
sum of partial amplitudes, Aj(p), describing electrons
ionized at each jth (j = 1, 2, . . . , 2N) optical half-cycle
T/2 = π/ω of the N -cycle pulse (1). In the low-frequency
limit (~ω ≪ |E0|), these amplitudes can be estimated us-
ing a modified saddle-point analysis, as done similarly in
Ref. [7]. As a result, the amplitudes Aj(p) depend on

tunneling ionization (t
(j)
i ) and rescattering (t

(j)
r ) times

for the jth half-cycle [where t
(j)
r lies in the (j+1)th half-

cycle], which satisfy the system of classical equations:

A(t
(j)
i )− 1

t
(j)
r − t

(j)
i

∫ t(j)r

t
(j)
i

A(t)dt = 0,

2F (t(j)r ) +
1

c

A(t
(j)
r )−A(t

(j)
i )

t
(j)
r − t

(j)
i

= 0,

(4)

where ẑF (t) is the electric field of the pulse [F (t) =

−(1/c)dA/dt]. The desired solutions (t
(j)
i , t

(j)
r ) of the sys-

tem (4) are those real solutions that ensure the shortest

return time, ∆tj = (t
(j)
r − t

(j)
i ) < T , and the maximum

classical energy, E(cl)
max,j, gained by an electron from the

laser field over the time ∆tj . With known t
(j)
i and t

(j)
r ,

the amplitude Aj(p) can be approximated in a way sim-
ilar to that for a monochromatic field [7]. Moreover, for
positive (or negative) p|| only those partial amplitudes

Aj(p) contribute for which F (t
(j)
i ) < 0 [or F (t

(j)
i ) > 0].

Omitting technical details, we focus here on the final
analytic result for P(p), which involves two terms:

P(p) = Pdir(p) + Pint(p). (5)

The first (“direct”) term is the sum of partial rates Γj(p):

Pdir(p) =
2π

~ω2

∑

j

′
Γj(p), (6)

where the prime on the sum means that the summation is
taken over j of the same (even or odd) parity depending

on the sign of p||. The rate Γj(p) describes photoelec-
trons created by the jth half-cycle of the pulse and can
be represented as a product of three factors similar to
that for a monochromatic field [7]:

Γj(p) = IjWj σ(p−∆pj), ∆pj = −|e|A(t(j)r )/c. (7)

The tunneling factor Ij describes the tunneling of an

active atomic electron at the moment t
(j)
i :

Ij =
m

π~κ
γ̃2jΓst(F̃j), (8)

where F̃j = |F (t(j)i )|, γ̃j = ~ω/(|e|F̃jκ−1) is an effective
value of the Keldysh parameter for the jth half-cycle, and
Γst(F̃j) is the tunneling rate for a bound atomic electron

in an effective static electric field ẑF (t
(j)
i ) [15]. The factor

Wj in Eq. (7) describes the propagation of the electron in
the laser-dressed continuum between the tunneling and
rescattering events and involves the Airy function Ai(x):

Wj =
p

~

Ai2(ξj)

ζ
2/3
j ∆t3jω

2
at

, ξj =
∆Ej

ζ
1/3
j Eat

, (9)

where Eat = ~ωat = e2/a, a is the Bohr radius,

∆Ej =
(p−∆pj)

2

2m
− E(cl)

max,j + 2|E0|
F (t

(j)
r )

F (t
(j)
i )

,

E(cl)
max,j =

e2
[

A(t
(j)
r )−A(t

(j)
i )

]2

2mc2
,

ζj =
1

F 2
at

{

− Ḟ (t
(j)
r )

2|e|

[

p|| +
|e|
c
A(t

(j)
i )

]

+ F 2(t(j)r )

×
[

4
F (t

(j)
r )

F (t
(j)
i )

− 3

]}

, Fat =
|e|
a2
, Ḟ (t(j)r ) ≡ dF (t)

dt

∣

∣

∣

t=t
(j)
r

.

The factor σ(p − ∆pj) in Eq. (7) is the field-free DCS
for EES from the atomic core with energy Er = (p −
∆pj)

2/(2m) and scattering angle Θ = π − θr, where

cos θr = |(p−∆pj) · ẑ|/|p−∆pj |. (10)

For the H atom, σ(p−∆pj) is known analytically,

σ(p−∆pj) =
m2e4

(p−∆pj)4
(1 + cos θr)

−2
, (11)

while for other atoms experimental or theoretical data for
σ(p) should be used, substituting there p → (p−∆pj).
The term Pint(p) in Eq. (5) originates from the in-

terference between the half-cycle ionization amplitudes
Aj(p) and Aj′ (p) having the same parity of j and j′. It
thus involves their phase difference Φj,j′ :

Pint =
2π

~ω2

∑

j 6=j′

′

sj,j′
√

Γj(p)Γj′ (p) cosΦj,j′(p), (12)

Φj,j′ = ϕj − ϕj′ + ψ(p−∆pj)− ψ(p−∆pj′ ), (13)

~ϕj = Sp(t
(j)
r )−

∫ t(j)r

t
(j)
i

[

E(t, t(j)i )− E0

]

dt, (14)
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FIG. 1. (color online) (a): The momentum distribution
P(p‖, p⊥) of electrons ionized from the H atom by a four-cycle

cos2-shaped pulse with wavelength λ = 1.3µm, peak inten-
sity 1.5×1014 W/cm2, and CEP φ = 0. Analytic (upper half-
panel) and TDSE results (bottom half-panel) are shown for
electron momenta at the high-energy end of the ATI plateau,
i.e., outside the white ellipse centered at p‖ = p⊥ = 0. (b):
ATI spectra for the laser pulse as in (a) but for φ = π/2 and
θ = 0 and π. Thin (black) lines: Eq. (5); thick (blue) lines:
TDSE results. Data for θ = π have been multiplied by 103.

Sp(t
(j)
r ) =

∫ t(j)r [p+ |e|A(t)/c]2

2m
dt,

E(t, t(j)i ) =
e2

2mc2

[

A(t) − 1

t− t
(j)
i

∫ t

t
(j)
i

A(τ)dτ

]2

,

where sj,j′ = sign[Ai(ξj)Ai(ξj′ )] (= ±1), and ψ(p) is the
phase of the EES amplitude f(p):

f(p) = |f(p)|eiψ(p). (15)

In Figs. 1 and 2 we compare our analytic predictions
for the probability P(p) with numerical TDSE results for
the case of a pulse (1) having a cos2-shaped envelope:

f(t) = −cF
ω

cos2
(

tπ

τ

)

, t ∈ [−τ/2, τ/2], (16)

where τ = 2πN/ω. The peak intensity of the pulse is de-
fined as I = cF 2/(8π). The 3D TDSE for the H atom was
solved using two different numerical algorithms, which
provide the same results for the ATI spectra. (For de-
tails of the numerical solution of the TDSE for ATI, see
Refs. [16, 17].) For He, we used the single active electron
approximation with the same one-electron potential as in
Ref. [18]. [This potential was also used to calculate f(p)
and σ(p) for He.] The result (5) for P(p) agrees well
with the TDSE results, as shown in Figs. 1 and 2(a,b)
for the H atom [for pulses with N = 4 and 6, whose full
widths at half maximum (FWHM) of the intensity are
6.3 and 9.5 fs, with T = 4.3 fs] and in Figs. 2(c,d) for He
for a six-cycle pulse (with FWHM of 5.8 fs, T = 2.67 fs).

Both the momentum distribution P(p‖, p⊥) in Fig. 1(a)
and the ATI spectra in Figs. 1(b) and 2 exhibit a left-right
asymmetry [3], which in our analysis originates from dif-
ferent contributions to P(p) of half-cycles with F (t) < 0
and F (t) > 0. Indeed, electrons with p‖ > 0 are created
by half-cycles with F (t) < 0, while those with p‖ < 0 by
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FIG. 2. (color online). ATI spectra produced by a six-
cycle cos2-shaped pulse with φ = π/2 for (a,b) hydrogen (for
λ = 1.3µm, I = 1.5 × 1014 W/cm2, up = 23.7 eV) and (c,d)
helium (for λ = 0.8µm, I = 5 × 1014 W/cm2, up = 29.9 eV).
θ = 0 in (a,c) and θ = π in (b,d). Thin (black) lines: Eq. (5);
thick (blue) lines: TDSE results. (e): Time evolution of F (t)
and A(t) for a six-cycle cos2-shaped pulse with φ = π/2. Open

(solid) circles mark the positions of times t
(j)
i (t

(j)
r ), with the

numbers marking the index j of the contributing half-cycle.

half-cycles with F (t) > 0. Moreover, due to the pulse-
shape and CEP dependences of A(t) and F (t), the times

t
(j)
i , t

(j)
r and the energies E(cl)

max,j are different for differ-
ent j, resulting in different maximal energies of electrons

(or plateau cutoff positions), E
(j)
cut, for half-cycles with

different j; e.g., for the case θ = 0 or π:

E
(j)
cut =

(

|∆pj |/
√
2m+

√

E(cl)
max,j

)2

. (17)

For p‖ > 0 (p‖ < 0) in Fig. 1(b) the major contribution
to P(p) comes from the single half-cycle with j = 4 (j =

5), for which E
(4)
cut ≈ 9.4up (E

(5)
cut ≈ 8.0up), where up =

e2F 2/(4mω2) = 23.7 eV. Hence, for the ATI spectra in
Fig. 1(b), P(p) ≈ Pdir(p) has a factorized form (with
EWP w4 for p‖ > 0 and w5 for p‖ < 0).
The large-scale interference minima in the ATI spec-

tra in Figs. 1(b) and 2 originate from interference of two
(short and long) electron trajectories [that contribute to
the partial amplitudes Aj(p)]; they are similar to those
for a monochromatic field [7, 19]. Besides these “intracy-
cle” oscillations, there are fine-scale modulations of P(p)
that have a period ∆E of order ~ω and are characteris-
tic for a short pulse [3], as seen clearly in Fig. 2. These
“intercycle” oscillations originate from the interference
term Pint(p) in Eq. (5) and become pronounced for pulses
with N > 4, when two adjacent partial rates, Γj(p) and
Γj+2(p), have different, large magnitudes. In Figs. 2(a,b)
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FIG. 3. H atom ATI spectra for the laser pulse of Fig. 2(b)
with N = 5. Lower (black) curve: Eq. (5) result. Upper
(blue) curve: approximate factorized formula result (cf. text).

the two are Γ6(p) and Γ8(p) with E
(6)
cut ≈ 9.7up and

E
(8)
cut ≈ 6.3up for p|| > 0, and Γ5(p) and Γ7(p) with

E
(5)
cut ≈ 8.0up and E

(7)
cut ≈ 9.0up for p|| < 0 [cf. Fig. 2(e)].

Since for θ = 0 in Fig. 2(a) the cutoff energies and rates
Γ5(p) and Γ7(p) have comparable magnitudes, the fine-
scale fringes modulate the large-scale oscillations up to
the plateau cutoff. However, for θ = π, both the cut-
off positions and tunneling factors (I8 ≈ 2I6) are rather
different, so that fine-scale oscillations in Fig. 2(b) are

significant only for electron energies E . E
(8)
cut, where the

rates Γ6(p) and Γ8(p) overlap. The same considerations
explain also the intracycle and intercycle modulation fea-
tures of the ATI spectra for He in Figs. 2(c,d).
To estimate the period ∆E of fine-scale oscilla-

tions analytically, we consider the interference factor
cosΦj,j+2(p) in Eq. (12) and approximate the difference
∆Φ(p, θ) ≡ Φj,j+2(p+∆p, θ)− Φj,j+2(p, θ) as follows:

∆Φ(p, θ) ≈ dΦj,j+2

dp
∆p ≈ dΦj,j+2

dp

m∆E

p
. (18)

On the other hand, since ∆Φ(p, θ) = 2π for two adjacent
fine-scale peaks, the use of Eqs. (13) and (18) gives:

∆E ≈ 2π~/∆T, ∆T = ∆tcl +∆tdis +∆tW, (19)

∆tcl = t(j+2)
r − t(j)r , ∆tdis =

|e|
cp

∫ t(j+2)
r

t
(j)
r

A(t)dt,

∆tW =
m~

p

[

dψ(p−∆pj+2)

dp
− dψ(p−∆pj)

dp

]

,

where the classical times ∆tcl and ∆tdis are the difference
between two rescattering times and the laser-induced
“displacement” time [3], while ∆tW has a quantum ori-
gin: it is the difference between the Wigner-like time
delays [20] for the first and second rescattering events.
Our results for P(p) are very general and applicable

to any atom for which either theoretical or experimen-
tal data on the field-free DCS σ(p) and the phase ψ(p)
of the EES amplitude are available. Since our analytic
derivations were carried out in the tunneling regime, the
general condition for validity of Eq. (5) for P(p) is that
the Keldysh parameters γ̃j for all contributing half-cycles
should be less than unity (0.56 ≤ γ̃j ≤ 0.83 in our results

for H, while 0.67 ≤ γ̃j ≤ 0.99 for He). Our derivations
show clearly that P(p) cannot in general be factorized

because the term ∆pj = −|e|A(t
(j)
r )/c in Eq. (7) is sen-

sitive to j. [Moreover, owing to the dependence of Pint(p)
on ψ(p−∆pj), P(p) is more sensitive to the atomic dy-
namics than for a monochromatic field.] Nevertheless,
factorization of P(p) can occur for a few-cycle pulse [as,
e.g., in Fig. 1(b)], when only a single rate Γj(p) con-
tributes predominantly to P(p). However, in this case,
the CEP-dependent “half-cycle” EWPs wj = IjWj are
different for electrons with p‖ > 0 and p‖ < 0. The fac-
torization postulated in Ref. [11] follows from our results
upon replacing ∆pj in σ(p−∆pj) in Eq. (7) and in the
phase ψ(p −∆pj) in Eq. (13) by that for the half-cycle

with maximum cutoff energy E
(j)
cut, i.e., with maximum

value of |A(t
(j)
r )|. [After such replacement, Eq. (5) takes

a factorized form and provides an explicit expression of
the EWP in this case.] However, since the DCS σ(p)
usually decreases with increasing p, this approximate fac-
torization overestimates the contribution of interfering

half-cycles with smaller cutoff energies E
(j)
cut, as the up-

per curve in Fig. 3 shows; the lower (exact) curve agrees
well with TDSE results (not shown). For E > 140 eV,
the exact and approximate results for P(p) in Fig. 3 co-
incide since the single ionization amplitude, Aj=4(p), is
dominant. Thus in this energy region the result (5) for
P(p) indeed reduces to a factorized form with the EWP
w4 = Ij=4Wj=4, while for E < 140 eV the interference
between amplitudes Aj=4(p) and Aj=6(p) becomes sig-
nificant and such factorization is not possible.

To conclude, we have derived quantum-mechanically
an analytic result for the ATI probability P(p) that is
valid in the high-energy part of the ATI plateau for a
short laser pulse of any shape and duration. These results
allow one to describe analytically the left-right asymme-
try as well as the large-scale (intracycle) and fine-scale
(intercycle) oscillations in ATI spectra. To use our re-
sults, only the EES amplitude f(p) for the target atom

and the solutions (t
(j)
i , t

(j)
r ) of the classical equations (4)

for a given short pulse are needed. Our results agree well
with TDSE results and provide an efficient tool for the
quantitative description of short-pulse ATI spectra.
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