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We consider a class of proposed gravitational wave detectors based on multiple atomic interfer-
ometers separated by large baselines and referenced by common laser systems. We compute the
sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial
motion of the light sources, and atomic shot noise and compare them to sensitivity limits for tradi-
tional light interferometers. We find that atom interferometers and light interferometers are limited
in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies
(e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion
of the light sources is slightly different and, in principle, favors the atom interferometers in the
low-frequency limit, although the limit in both cases is severe.

PACS numbers: 04.80.Nn,95.55.Ym,03.75.Dg,07.60.Ly

Introduction.—The detection and measurement of
gravitational waves (GWs) from astrophysical and cos-
mological sources is recognized as one of the most promis-
ing sources for new information about the universe[1]
and has been a goal of experimental physicists for nearly
half a century[2–8]. The milliHertz-frequency region of
the GW spectrum is expected to be particularly rich in
GW sources and has been the target of proposed space-
based instruments, most notably the Laser Interferome-
ter Space Antenna (LISA) [9]. LISA was identified as a
priority in the most recent decadal survey of astronomy
and astrophysics[10] but has yet to be implemented due
to funding constraints.

GW detectors based on a single isolated atom interfer-
ometer (AI) have been considered[11] but found to have
little advantage over light interferometers[12, 13]. More
recent proposals use two AIs separated by a large baseline
and referenced to a common pair of lasers[14, 15]. These
instruments use the AIs both to provide an inertial ref-
erence and to measure the phase of the light fields used
as the atom “optics”. When the light source is placed
sufficiently far from the AI, the optical phase contains
a non-negligible contribution from GWs. However, the
optical phase measured by the AI also contains contribu-
tions from intrinsic phase fluctuations of the light source
and Doppler motion of the light source relative to the
atoms. By using a common pair of lasers for both AIs,
the proposed GW detectors can eliminate contributions
from one of these light sources. However, the contribu-
tions from the second light source remain. In this letter,
we calculate the limits on GW sensitivity resulting from
intrinsic phase fluctuations and light source motion for a
GW detector consisting of two AIs while making a paral-
lel analysis of a light interferometer (analogous to a single
‘arm’ of LISA).

Our treatment clarifies the relative merits of the two
approaches to space-based GWmeasurement and may be
helpful in future GW instrument design considerations.

Analysis.— A single three-pulse Mach-Zehnder (MZ)

AI, like the one shown in Figure 1, is controlled by two
lasers (“left” and “right”) on separate platforms sepa-
rated by a distance L. A three-level atomic system is
assumed with ground states |pi, i〉, where pi describes
the linear momentum of the atom in the x̂-direction and
i = 1, 2 denotes the internal state. An atom cloud pre-
pared in state |p1, 1〉 enters the interferometer and is sub-
jected to a Raman π

2 -pulse beam splitter at point a at
time t− 2T . This splits the atom wavepacket into a por-
tion in state |p1, 1〉 and a portion in state |p2, 2〉. At a
time t − T , a π-pulse converts the |p1, 1〉 portion into
|p2, 2〉 at point b. A short time ∆t later, the same pulse
converts the |p2, 2〉 state back into a |p1, 1〉 state at point
c. At time t, the two wave function paths converge (point
d) and are re-combined with another π

2 pulse.
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FIG. 1: A three-pulse Mach-Zehnder atom interferometer
controlled by two lasers on separate platforms separated by a
distance L

After recombination, the population in one or both of
the two ground states is measured and the result is used
to determine the phase of the wavefunction. It has been
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shown[16] that the wavefunction phase response, γ(t),
from the AI measured just after the third pulse at time
t is given by

γ(t) ≈ δΦ(t)− 2δΦ(t− T ) + δΦ(t− 2T ) + δΦm(t), (1)

where δΦ(t) is the difference from nominal phases of the
optical phases observed by the atoms and δΦm(t) is any
measurement noise in the AI, for instance atom shot
noise. We assume T ≫ ∆t and we neglect the finite
duration of the Raman pulses here for clarity [17]. In the
Fourier domain, (1) becomes

γ̃ = −4 sin2 (ωT/2) e−iωT δΦ̃ + δΦ̃m, (2)

where tilde denotes the Fourier transform of a timeseries
and ω is the angular Fourier frequency. In the low fre-
quency limit ωT ≪ 1 the transfer function from δΦ̃ to γ̃
is that of a second time derivative. The significant time-
varying contributions to the phase differences are given
by

δΦ(t) = δφL(t)− δφR(t), (3)

where δφL(t) are the phase variations of the left light
source retarded from a reference point in the vicinity of
the atom cloud, and δφR(t) are the retarded phase vari-
ations of the right light source. Specifically,

δφL(t) ≈ kδx1(t) + δφ1(t), (4)

δφR(t) ≈ −kδx2(t−D) + δφ2(t−D) + kcY−(t), (5)

where k is the nominal wavenumber of the photons, ne-
glecting the splitting between the |1〉 and |2〉 internal
states and other higher-order effects. The approximate
light propagation time between the distant right laser
and the atom cloud is D = L/c, the position fluctua-
tions caused by non-gravitational forces on the left and
right light sources are given by δx1(t) and δx2(t), and
the intrinsic optical phase noise for the left and right
light sources are given by δφ1(t) and δφ2(t). GWs will
cause the received optical phase to differ from the emit-
ted phase by a Doppler shift Y−(t).
We ignore any GW effect on the individual AI, as-

suming the atom separation is much smaller than L[14].
Similarly, we neglect GW effects on the phase of the left
light source, which is assumed to be close to the AI. In
the Fourier domain, the phase difference needed for Eq.
(1) is

δΦ̃L ≈
[

kδx̃2 − δφ̃2

]

e−iωD + kδx̃1 + δφ̃1 − kcỸ−. (6)

For comparison, we can evaluate the phase difference
measured by a one-way light interferometer link, which
form the basis of light interferometer detectors such as
LISA:

δΦ̃
(l)
L ≈

[

kδx̃2 − δφ̃2

]

e−iωD − kδx̃1 + δφ̃1 − kcỸ−. (7)

The primary difference between the phase measured
by the AI and that measured by a light interferometer
is in the sensitivity to motions of the light sources. In
the case of the AI, the measured phase is sensitive to the
common-mode motion of the light sources, where in the
case of the light interferometer the measured phase is sen-
sitive to differential motion. Importantly, the sensitivity
to intrinsic phase noise and gravitational waves are iden-
tical. We also note that we use the general term ’light
source motion’ while in practice the relevant motion will
typically be that of a fiducial optic such as a mirror or
beamsplitter rather than of the light source itself.
A classic application of a single AI like that in Figure 1

is as a gravimeter or accelerometer. In that case, with the
appropriate approximations δx̃1 = δx̃2 = δx̃ (common
rigid optics platform), δφ̃1 = δφ̃2 (common laser source),
D ≈ 0 (short distance), and Ỹ− ≈ 0 , Eq. 6 reduces to
δΦ̃L ≈ 2kδx̃. Applying the low-frequency limit of (2),
the output of the MZ is γ̃ ≈ −2kT 2δã, where δã ≡ ω2δx̃
is the acceleration noise of the light source (the atoms are
assumed to be in an inertial frame in this analysis). This
is consistent with results in the literature for AI-based
gravimeters[18].
We consider one-arm GW detectors[14, 15] based on

a pair of AIs in an arrangement similar to the design of
gravity gradient experiments[19], as shown in Figure 2.
A common pair of lasers drives two three-pulse MZ AIs
are spaced by a distance L = cD.

L= D c

T

Le
ft

 L
a

se
r 

P
la

tf
o

rm
 

R
ig

h
t 

L
a

se
r 

P
la

tf
o

rm
 

space 

ti
m

e
 

Left AI Right AI 

T

T

T

FIG. 2: An arrangement of two three-pulse Mach-Zehnder
atom interferometers separated by a baseline L and using
common light sources have been proposed as a detector of
gravitational waves

The vertex contribution to the response of the left-
hand interferometer is given by (6). The contribution to
the response of the right-hand interferometer is similar,
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δΦ̃R ≈
[

kδx̃1 + δφ̃1

]

e−iωD + kδx̃2 − δφ̃2 + kcỸ+. (8)

where δΦ̃R denotes the phase difference at an AI vertex
on the right atom interferometer and Ỹ+ is the GW effect
incurred by the left laser beam propagating to the right
atom cloud.
The effect of GWs on electromagnetic propagation

from a distant source is familiar from the analysis of
space-based light interferometer concepts, pulsar-timing
searches for GWs, and microwave Doppler tracking of
spacecraft. The result is a Doppler-shift on the electro-
magnetic frequency given by [20, 21]

y(t) ≡
δν

ν
=

1

2

ninj [hij(x
a
emit)− hij(x

a
rec)]

1− kini
, (9)

where ni is the laser propagation direction, ki is the GW
propagation direction, and the spacetime metric hij is
in transverse-traceless gauge evaluated at the points of
emission and reception at the atom. In our case we
will assume that ni is in the ±x̂ direction, and define
cos(θ) = kx. Then, assuming the instrument is opti-
mally oriented for a linearly polarized GW signal h(t),
with t being evaluated at a point x0 midway between
the two atom clouds, the relevant metric component is
hxx = sin2(θ)h(t − cos(θ)(x − x0)/c).
The GW terms, Y±, in (6) and (8) are related to the

GWDoppler shift in (9) by a time derivative. Taking into
account the spacetime emission and reception points, we
get Ỹ± = ỹ±/(iω) = − 1

2 h̃D sin2(θ)e−iωD/2sinc(ωD(1 ∓
cos θ)/2)). For the remainder of our analysis, we will
consider a GW source with an optimal sky location (θ =
π
2 ), for which Ỹ± ≈ −h̃ω−1e−iωD/2 sin (ωD/2).
The output of the GW detector in Figure 2 is ob-

tained by differencing the response of the two AIs, Γ(t) =
γR(t)−γL(t−D), where γL/R is the response given in (1)
from the left and right AIs respectively. The GW signal
is derived from the difference in the response γ̃ from the
two AIs, and thus depends on the optical phase differ-
ence at the corresponding vertices on the left and right
AI, ∆Φ(t) ≡ δΦR(t)− δΦL(t−D). Making substitutions
from (6) and (8) and converting to the Fourier domain,
the result is

∆Φ̃ = 2i sin(ωD)e−iωD

[

kδx̃2 − δφ̃2 +
ikc

2ω
h̃

]

. (10)

Note that in (10) the contributions from the left laser’s
intrinsic frequency noise and from the Doppler shifts in-
duced by the left laser platform’s motion are cancelled
out but the corresponding terms from the right laser and
laser platform remain. The output of the complete two-
cloud GW detector in Figure 2 can be computed by com-
bining (10) and (2):

Γ̃ = β

[

kδx̃2 − δφ̃2 +
ikc

2ω
h̃

]

+∆Φ̃m, (11)

where β ≡ −8i sin2(ωT/2) sin(ωD)e−iωD and ∆Φ̃m rep-
resents the combined measurement noise in the two AIs.
For comparison, consider the two-way light interfer-

ometer signal, which is formed by differencing the two
one-way optical phase measurements given by (7):

Γ̃(l) = β(l)

[

−
ik

sin (ωD)
δx̃12 − δφ̃2 +

ikc

2ω
h̃

]

+∆Φ̃(l)
m ,

(12)
where β(l) ≡ 2i sinωDe−iωD, δx̃12 ≡ δx̃1 − cos(ωD)δx̃2,

and ∆Φ̃
(l)
m is the combined phase measurement noise, for

example due to photon shot noise, in the single light in-
terferometer arm.
The strain sensitivity of a GW detector can be com-

puted by comparing the relative sizes of the GW strain
and the noise sources in the detector output. For a gen-
eral GW detector with frequency response Γ̃ and noise
sources θ̃α, the sensitivity can be computed as

Sh =

∣

∣

∣

∣

∣

∂Γ̃
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∣

∣

∣

∣

∣
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∑
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2

Sθα , (13)

where Sh is the power spectral density of the GW strain
equivalent to the detector noise and Sθα are the power
spectral densities of the noise sources.
This formalism can be applied to the GW detector in

Figure 2 using the result in (11), yielding contributions
to the sensitivity from intrinsic phase noise, platform po-
sition noise, and measurement noise. Alternatively, the
sensitivity can be expressed in terms of the intrinsic frac-
tional frequency noise, Sδν ≡ ω2/(2πν)2 Sδφ2

, the plat-
form acceleration noise, Sa2

≡ ω4Sx2
, and measurement

noise, which we assume is dominated by the combined
atomic shot noise, Sshot = 2/ηHz−1, η being the number
of detected atoms:

Sh = 4Sδν +
4

ω2c2
Sa2

+
1

8(kcD)2 sin4(ωT/2)η

1

Hz
, (14)

where we’ve taken the limit ωD ≪ 1, consistent with
typical AI GW instrument concepts. The literature on
proposed AI GW instruments typically only considers the
last term in (14)[22].
The same procedure can be applied to the single-arm

light interferometer described by (12) with the combined
measurement noise being the photon shot noise in the

two interference measurements, S
(l)
shot = 2h̄ν/Prec Hz

−1,
where Prec is the light power received from the far light
source,

S
(l)
h = 4Sδν +

4

ω4c2D2
Sa12

+
h̄

πkcD2Prec
. (15)

It is clear from the first terms in (14) and (15) that de-
tection of a characteristic strain h with either a single-
arm light interferometer or a single-arm AI requires a

light source with S
1/2
δν ≈ h/2. The highest perform-

ing cavity-stabilized laser systems, which are limited by
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thermal noise in the cavity mirror coatings, have S
1/2
δν ≈

10−15 · (f/1Hz)−1/2 Hz−1/2 [23, 24]. This is roughly six
orders of magnitude above the typical strength of as-
trophysical GW sources in the milliHertz band. Light
interferometers typically address this problem by utiliz-
ing multiple arms. For a detector with two equal-length
orthogonal arms driven by a common laser source, the
optical phase terms in each measurement will have the
same sign and magnitude while the GW term will have
opposite sign due to the quadrupolar signature of the re-
sponse. Differencing the signals from the two arms can-
cels optical phase noise while retaining the GW signal.
This cancellation can be extended to arrangements with
unequal length arms using the Time Delay Interferome-
try (TDI) technique[25].

Because acceleration noise in orthogonal directions is
uncorrelated, multiple-arm interferometer designs do not
allow light source acceleration noise to be cancelled. For
example, an equal-arm Michelson interferometer is sen-
sitive to both in-plane components of the beam-splitter
motion. However, there are two differences in sensitivity
between the AI-based GW detector and the light inter-
ferometer equivalent. The first is that the AI is sen-
sitive to the absolute acceleration noise of one of the
light sources whereas the light interferometer is sensi-
tive to the relative acceleration noise between the two
light sources. The second is that the light interferome-
ter sensitivity has an additional factor of (ωD)−2, which
means that for a short detector baseline with a given
light-source acceleration noise, the light interferometer
will have a higher sensitivity limit (less sensitive to GW
signals) than the equivalent AI detector. In the case of
the AI, the light-source acceleration noise requirements
for detecting astrophysical GW sources are independent
of the baseline, but nonetheless stringent. For example,

to reach a strain sensitivity of S
1/2
h ≈ 10−21 at a fre-

quency of ω = (2π) 1mHz would require a light source

acceleration noise less than S
1/2
a ∼ 10−15m/s2/Hz1/2. It

makes sense that this is comparable to the residual accel-
eration requirement on the drag-free test masses in LISA
and LISA Pathfinder [9, 26] since (ωD)LISA ∼ 1.

Discussion.— In this analysis we have compared the
basic gravitational-wave response and sensitivity proper-
ties of possible space-based atom intereferometer instru-
ments with analogous laser-interferometer instruments,
focusing on two of the classic noise sources, spacecraft ref-
erence motion and laser phase noise. These noise sources
constrain traditional gravitational-wave mission design,
but have generally been given little attention in the dis-
cussion of AI-based concepts.

We summarize our results in terms familiar to the
laser-interferometer GW community. Each AI cloud
functions as a (nearly) freefalling laser phasemeter. The
AI signal results from electromagnetic phase signals
which are identical to analogous spacecraft-local phase

measurements in a light interferometer link in their re-
sponses to both gravitational waves and laser frequency,
but differ in their responses to the light-source motion.
The atom interferometer shows common mode motion of
the two end light sources rather than relative motion.

Because of this difference, in the AI instrument, accel-
eration noise of one laser source can be cancelled, and
the effect on GW sensitivity of the other becomes inde-
pendent of the instrument baseline. Beginning with a
LISA-like concept, the use of AI would allow the con-
stellation to be shortened without increasing the resid-
ual acceleration requirements of the reference point. A
smaller instrument would potentially be more sensitive
to higher-frequency gravitational-wave signals.

To determine whether this potential could be realized
requires the resolution of a large number of technical is-
sues which fall beyond the scope of this analysis. The
acceleration noise requirement on the atom clouds, for in-
stance, does increase when the arms are shortened. Many
of these technical issues have been carefully studied in
the AI community, but detailed requirements for a space-
based gravitational-wave mission have not been carefully
worked out. Where they are known, the requirements
often exceed the current performance of ground-based
experiments. We also note that we expect the GW sen-
sitivity limits due to optical phase noise and light source
acceleration noise discussed here to be generally appli-
cable to more complex AIs. This is because the compe-
tition between the GW signal, optical phase noise, and
acceleration noise occurs in the optical phase. A more
precise measurement of this phase with a more complex
AI (e.g. high-momentum transfer atomic beam-splitters,
5-pulse interferometers, etc.) may improve GW sensitiv-
ity relative to atom shot noise, but will not improve the
sensitivity relative to optical phase noise or acceleration
noise. We expect the ideas presented here to be helpful
in designing future GW instruments which make the best
use of AI technology.
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