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The macroscopic tunneling of an optomechanical membrane is considered. A cavity mode which
couples quadratically to the membranes position can create highly tunable adiabatic double-well
potentials, which together with the high Q-factors of such membranes render the observation of
macroscopic tunneling possible. A suitable, pulsed measurement scheme using a linearly coupled
mode of the cavity for the verification of the effect is studied.
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Optomechanical systems have seen a recent surge in
experimental and theoretical interest, culminating in the
cooling of micromechanical oscillators to within a frac-
tion of a phonon of their quantum ground state [1–4]
and the reaching of the strong coupling between cavity
field and mechanical element [5, 6]. Despite these suc-
cesses, few experimental demonstrations of non-classical
behavior have been achieved so far. Notable exceptions
include Ref. [1], which coupled the mechanical oscillator
to a Josephson qubit to detect the presence of a single
mechanical phonon, and Ref. [4], which demonstrated the
asymmetry between up-converted and down-converted
photons of a probe laser field, an unambiguous signature
of the asymmetry between phonon absorption and emis-
sion. Additional proposals to generate and exploit non-
classical effects in cavity optomechanics include schemes
to squeeze a motional quadrature of the oscillator [7–
12], perform quantum state tomography [1, 13, 14], or
offer alternative ways to engineer non-classical mechani-
cal states [15, 16] including most intriguingly perhaps the
realization of Schrödinger cat states in truly macroscopic
systems [17–19].

This paper extends these considerations by exploring
the possibility to realize and verify the quantum tunnel-
ing of an optomechanical system operating deep in the
quantum regime through a classically forbidden poten-
tial barrier. The observation of the tunneling of such a
truly macroscopic object has not been achieved yet, al-
though theoretical proposals have been made [20]. We
find that this can be achieved in a “membrane-in-the-
middle” (MiM) configuration [22–24] under conditions
that are close to being realizable in current state-of-the-
art experiments. We propose a detection scheme based
on pulsed optomechanics ideas [14] that permits to moni-
tor the tunneling dynamics through a series of weak mea-
surements of the membrane position.

Our approach relies on adiabatically raising a poten-
tial barrier, whose parameters can be widely tuned, at the
location of a mechanical harmonic oscillator. We show
that the ground state of the resulting double-well poten-
tial can exhibit tunneling rates several orders of magni-
tude larger than the decoherence rate of the mechani-

FIG. 1. (Color Online) Membrane-in-the-middle optomechan-
ical system. The dashed lines illustrate the adiabatic double-
well potential induced by the field mode. The membrane in
shown in a superposition of left-well state and right-well state.
The lower figure sketches a scheme for the detection of mem-
brane tunneling.

cal membrane, and that a weak optomechanical position
measurement is enough to monitor the tunneling. Be-
sides tunneling, the proposed scheme allows for the study
of the quantum Zeno effect (QZE) [21] in a mechanical
context and provides a comparatively simple scheme for
the preparation and characterization of non-classical me-
chanical states of interest for quantum metrology and
sensing.

We consider a MiM optomechanical system [22, 23, 25–
27] consisting of two fixed mirrors and a partially reflect-
ing membrane of center-of-mass oscillation frequency ωM
and effective mass M between them, see Fig. 1. A unique
feature of this system is the option to realize either linear
or quadratic optomechanical couplings, depending on the
precise membrane’s equilibrium position. Our proposed
scheme involves one cavity mode that couples quadrati-
cally to the membrane to realize a double well potential,
and a second mode that couples linearly and is excited
by short optical pulses to first prepare and then monitor
the membrane position.
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Consider first the quadratic coupling mode. The cor-
responding system Hamiltonian is

Ĥ = ĤM + Ĥopt + Ĥpump + Ĥκ + Ĥγ , (1)

where we have in harmonic oscillator units (ωM = M =
1)

ĤM =
p̂2

2
+

1

2
x̂2, (2)

Ĥopt = ~
(
ωc +

1

2
g2x̂

2

)
â†â, (3)

Ĥpump = i~
(
ηe−iωptâ† − η∗eiωptâ

)
. (4)

Here ĤM is the energy of the mechanical resonator and
Ĥopt is the optomechanical interaction, with ωc the res-
onance frequency of the cavity and g2 the quadratic op-
tomechanical coupling constant. The optical pumping at
frequency ωp with pumping rate η is described by Ĥpump.

The dissipation terms Ĥκ and Ĥγ account for cavity and
mechanical damping with rates κ and γ respectively.

The Heisenberg equations of motion for the membrane
position can be cast as the second order equation

d2x̂

dt2
+
γ

2

dx̂

dt
= −x̂− g2â†âx̂+ ξ̂ (t) , (5)

where ξ̂ (t) is the noise operator associated with thermal
damping of the oscillator, and the evolution of the cavity
field is governed by

d
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â− κ

2
â+ η +
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κâin. (6)

Given stable parameters, the cavity field approaches its
steady state in a timescale κ−1. For κ� (ωM , γ) it there-
fore follows adiabatically the position of the membrane
(note that this neglects the optomechanical membrane
cooling), and the membrane dynamics are robust against
fluctuations of the cavity field. Furthermore, a fast cav-
ity decay rate destroys the quantum correlations between
the light field and the membrane, in which case it is suf-
ficient to treat the optical field classically, which we do
in the following. The intracavity intensity as a function
of the membrane position is

Ī(x̂, t) ≈ η2

(κ/2)
2

+ ∆2 (x̂, t)
, (7)

where ∆ (x̂, t) ≡ δc + g2〈x̂2〉 (t) , with δc = ωc − ωp the
detuning of the pump from the cavity resonance. In-
serting this expression into Eq. (5) and integrating the
right hand side gives the effective potential acting on the
membrane,

U(x̂) =
1

2
x̂2 +

4η2

κ
arctan

[
∆ (x̂, t)

κ/2

]
. (8)

FIG. 2. (Color Online) Ratio of barrier height to ground state
energy (solid line, left axis) and half minimum separation xmin

in units of the zero-point width xzpt (dotted line, right axis)
as functions of the pumping rate η. The x-axis starts at the
point where we have D = 0 (see main text). The coupling
strength is g2/ωM = −2× 10−4 and the detuning is zero.

.

The light field adds an arctangent function to the har-
monic potential, which for positive coupling g2 leads to
tighter confinement and for negative couplings, which
is the case we are interested in, to a symmetric bar-
rier whose parameters depend on η and δc. For D ≡
−κ2 − 16η2g2 > 0, the potential becomes a symmetric
double well with two local minima at

±xmin = ±

√
−2δc +

√
D

2g2
, (9a)

separated by a barrier of height [28]

Eb = −1

2
x2min +

4η2

κ

[
arctan (2δc/κ) + arctan

(√
D/κ

)]
.

(9b)
Typical parameters allow for a wide range of separa-

tions between minima and barrier heights, as illustrated
in Fig. 2, which shows xmin and Eb as a function of the
pumping rate η. The beginning of the x-axis is chosen
at the pump rate which gives D = 0. The distances be-
tween minima can be substantial, and the traps should
be accordingly shallow to give reasonable tunneling rates.
For the numerical calculations, we assumed the quadratic
single photon coupling g2/ωM = −2× 10−4, which for a
typical membrane with ωM/2π ≈ 100 kHz translates into
a single photon optomechanical coupling of 20 Hz. Such
relatively high coupling rates can be obtained by using
avoided crossings between higher transverse modes [24].
In addition, a noteworthy aspect of this scheme is its ver-
satility, as weak couplings and/or high decay rates can be
compensated by adjusting the detuning or increasing the
input power, see Eqs. (9), which for the presented calcu-
lations is of the order of 1 µW. We note that the shape of
the potential is very sensitive to the input power. This
constraint is weakened by the fact that the membrane is
not sensitive to the instantaneous photon number in the



3

cavity, but rather to its average value over the time of a
mechanical oscillation. We therefore think that this sen-
sitivity is not a fundamental issue. Generally speaking,
low effective membrane mass and frequency are desirable
to keep the tunneling rates high.

To estimate the tunneling rates in the double-well po-
tential, we consider the membrane Hamiltonian H =∑∞
i=1Eiĉ

†
i ĉi, with eigenenergies Ei determined by the

time independent Schrödinger equation [p̂2/2+Û (x̂)]ψ =
Eψ. If E1 and E2 are smaller than the barrier height Eb,
their values lie very close together. The corresponding
eigenstates ψ1 and ψ2 are symmetric and antisymmet-
ric, respectively, but exhibit similar squared amplitude.
Thus the states

FIG. 3. Double well and resulting splitting of energy lev-
els. Also shown the squared amplitudes of the two local-
ized wavefunctions. Parameters used: g2/ωM = −2 × 10−4,
η/ωM = 176.785.

ψR,L(x) = 1/
√

2(ψ1(x)± ψ2(x)) (10)

are located predominantly in one of the two potential
wells. A typical situation is depicted in Fig. 3, which
shows a double-well potential, its energy levels as well
as the squared amplitudes of the located wave functions
ψL/R.

Reexpressing the membrane Hamiltonian in terms of
the localized modes

ĉR,L(x) = 1/
√

2(ĉ1 ± ĉ2) (11)

we obtain

H =
∑

j∈{L,R}

Ej ĉ
†
j ĉj+

J

2
(ĉ†LĉR+ ĉ†RĉL)+

∑
i>2

Eiĉ
†
i ĉi, (12)

with EL = ER = (E1 + E2)/2 and the tunneling rate
J = E2 − E1. Figure 4 shows the normalized tunneling
rate J/ωM as a function of the pumping rate η/ωM , il-
lustrating its exponential decrease for increasing η, i.e.,
increasing xmin and Eb, see Fig. 2. If more eigenvalues
Ei lie below the barrier they can be split up analogously

FIG. 4. (Color Online) Tunneling rate J of the two lowest
lying states, normalized to ωM , as a function of the scaled
pumping rate η/ωM for g2/ωM = −2× 10−4, κ/ωM = 10 and
δc = 0. Note the logarithmic y-axis.

but we find that ground state tunneling rates become
unpractically small in such a situation. In the case of a
thermal state, it could still be possible to verify tunneling
of higher-lying states. The discussion of this situation is
slightly more involved and beyond the scope of this letter.

In order for tunneling to survive decoherence effects
the value of J must be large compared to n̄ωM/Q, where
n̄ is the number of phonons in the thermal bath. Re-
cent experiments with Si3N4 membranes demonstrated
Q-factors in excess of 106 [29] at frequencies of 500kHz,
with ωM/Q = 0.5 sec−1 and effective mass of ∼ 50ng. For
such a membrane, we find tunneling rates in the range
of J ∼ 100Hz, indicating that the realization of macro-
scopic optomechanical tunneling should be within reach
of a cryogenic experiment.

The detection of tunneling must be able to confirm its
quantum nature – as opposed to classical motion or fluc-
tuations driving the dynamics. The effect of continuous
position measurements in a double-well setting has been
previously studied in the context of single atom tunnel-
ing [30], and reveals two main effects. Firstly, continu-
ous measurements can decrease the tunneling rate due
to the QZE and secondly, back-action from the measure-
ment heats up the membrane and thus eventually sup-
plies enough energy to cross the barrier thermally. To
avoid these difficulties, we consider instead a pulsed op-
tomechanics approach adapted from the scheme recently
proposed by Vanner et al. [14] in the context of pon-
deromotive squeezing, but adapted to the simpler task of
monitoring the position of the membrane with a resolu-
tion better than the well width. Since the quadratically
coupled resonator mode is insensitivite to the sign of x,
the measurement sequence involves a sequence of opti-
cal pulses that drive a second resonator mode linearly
coupled to the membrane.

In the specific experimental realization that we have
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in mind the center-of-mass motional mode of the mem-
brane is initially prepared in its ground state, a step
that is of course essential and that could be achieved
either cryogenically or via an initial optomechanical cool-
ing stage, depending on the specifics of the experimental
setup. A symmetric potential barrier is then adiabati-
cally raised by increasing the power of the quadratically
coupled mode, such that the membrane finds itself in the
symmetric ground state of the double well. The dynam-
ics of the membrane is then monitored by performing a
sequence of pulsed measurements [14].

Briefly, the pulsed interaction and measurement are
described by non-unitary operators that determine the
post-measurement mechanical state via

ρpost =
ΥρpreΥ

†

Tr (ΥρpreΥ†)
, (13)

where the Kraus operator Υ is given explicitly by

Υ = exp

[
− (xres − x̂)2

2σ2

]
, (14)

where σ2 is the uncertainty of the measurement, inversely
proportional to the measurement strength [14]. It is de-
termined by the coupling strength of the light mode to
the membrane and the pulse intensity.

A “preparation” pulse that projects the membrane po-
sition with equal probabilities in the left or right well de-
termines its initial position. That measurement must be
strong enough to project the state of the membrane un-
ambiguously into one of the two wells, but weak enough
to keep its energy below the barrier. The membrane then
starts to tunnel to the opposite well, which it will occupy
with high probability after a time of the order of J−1. A
sequence of measurement pulses with a pulse separation
short compared to that time is then applied to monitor
the tunneling dynamics. Averaging trajectories starting
in the same well, will unambiguously confirm quantum
tunneling by revealing the slow, harmonic oscillation of
the membranes position. In contrast, classical inter-well
transitions that might result from too strong measure-
ment pulses or an insufficient barrier height will result in
a zero average displacement.

We demonstrated the validity of that measurement
protocol by performing a numerical stochastic simulation
for the parameter values of Fig. 3. Following that initial
preparation that left the membrane in the left potential
well, the density operator was propagated unitarily and
a sequence of 20 pulsed measurements per tunneling cy-
cle were simulated using Eq. (13). A typical trajectory
is plotted in Fig. 5. The quantum nature of the jumps
was confirmed by monitoring the membrane’s energy and
verifying that it stayed below the barrier height, and the
signature of quantum tunneling is the emergence of har-
monic oscillations of the position after averaging post-
selected trajectories. The insert of the figure shows a

FIG. 5. (Color Online) Typical outcome of a sequence of 20
position measurements of a membrane initially prepared on
the left potential well. The solid line gives the coherent evo-
lution (i.e. without measurements) of 〈x̂〉 for that particular
trajectory. Inset: Distribution of 200 measurement outcomes
at ωMt = 20, where only trajectories that started in the left
well were post-selected. Parameters as in Fig. 3,, measure-
ment strength 1/σ = 0.02.

typical histogram of measurement outcomes a short time
after the initial preparation of the membrane.

In summary, we have investigated the possibility to
observe the tunneling of a macroscopic optomechanical
membrane in a cavity. The potential barrier is a conse-
quence of the quadratic optomechanical coupling of the
membrane to a lossy cavity mode. This set-up is a ver-
satile tool to create wide, shallow double-well potentials.
Using parameters from recent experiments, we find that
achievable tunneling rates can exceed the decoherence
rates of the membrane by several orders of magnitude.
The effect could be verified in a pulsed optomechanics
measurement scheme with a weak optical pulse train
linearly coupled to the membrane. Besides the possi-
bility of verifying quantum tunneling at unprecedented
scales, this system also offer the potential to prepare
and detect nonclassical “Schrödinger Cat” state. Fur-
ther studies will include investigations of different ways to
characterize such mechanical states nondestructively and
the potential exploitation of their non-classical nature in
applications such as high-precision quantum metrology,
the study of decoherence mechanisms, and the quantum-
classical transition.
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