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We study the notion of superfluid critical velocity in one spatial dimension. It is shown that
for heavy impurities with mass M exceeding a critical mass Mc, the dispersion develops periodic
metastable branches resulting in dramatic changes of dynamics in the presence of an external driving
force. In contrast to smooth Bloch Oscillations for M < Mc, a heavy impurity climbs metastable
branches until it reaches a branch termination point or undergoes a random tunneling event, both
leading to an abrupt change in velocity and an energy loss. This is predicted to lead to a non-analytic
dependence of the impurity drift velocity on small forces.

The study of the effect of impurities constitutes a ma-
jor theme in condensed matter physics. In the solid state
impurities are typically regarded as immobile, acting as
static perturbations. Prime examples include the resid-
ual resistance of metals and the Kondo effect. In other
(typically liquid) states mobile impurities play a vital
role, with the influence of 3He impurities on the trans-
port properties of superfluid 4He being perhaps the best
studied example [1, 2] .

The traditional goal has been to understand the effect
of foreign particles or defects on an otherwise pure sys-
tem. However, the converse problem – to determine the
effect of the surrounding medium on the motion of impu-
rities – is increasingly relevant to the study of ultracold
atomic gases. There are several ways in which mobile
impurities appear naturally in these systems: (i) a small
fraction of atoms may be transferred to a different hy-
perfine state, creating a dilute gas of distinguishable im-
purities of the same mass [3–5]; (ii) mixtures of different
atomic species (e.g., 87Rb and 41K in Ref. [6]) with one
dilute component give a route to impurities of mass M
different from the mass m of the host particles; (iii) Ions
of Yb+, Ba+ or Rb+ have been placed in a Bose-Einstein
condensate of neutral 87Rb atoms [7, 8]. In each of these
situations, impurity dynamics may be investigated with
the help of external forces that act selectively on the im-
purity.

Owing to recent advances in cold atom trapping, sys-
tems in reduced dimensionalities are now well within ex-
perimental reach [5, 7, 8], bringing to light a wide range
of rich and peculiar phenomena. In one spatial dimen-
sion (1D) Refs. [9, 10] established that even in the limit of
strong interactions, there exists a timescale beyond which
an impurity with quadratic dispersion, E(P ) = P 2/2M∗,
may propagate in a quantum fluid. In this Letter we fo-
cus on the full dispersion E(P ) of the resulting motion,
which possesses several remarkable features not present
in higher dimensions. The most prominent property is its
periodicity, which is not evident from a quadratic, small
P expansion, and may be explained as follows. The mo-
tion of N particles on a ring with circumference L re-

FIG. 1. Dispersion law for an impurity in a 1D quantum
fluid for various impurity masses. (a) M < Mc, E(P ) is
a smooth function of P and H (inset, Eq. (2)) has a single
minimum. (b) M &Mc, there exists a metastable minimum.
An impurity driven by a force climbs a metastable branch
until tunneling or H loses its minimum. Each cycle releases
energy ε to the system. (c) M �Mc, many minima co-exist.

sults in the total momentum being quantized in units of
2π~N/L = 2π~n, where n is the one-dimensional density
of the fluid. On the the other hand, in the thermody-
namic limit N,L → ∞, N/L = n, this motion costs
no kinetic energy due to infinite total mass Nm. Thus,
instead of paying macroscopic energy (2π~n)2/2M∗ to
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deliver this momentum to impurity motion, the system
channels it to the superflow of the background liquid at
no energy cost. As a result, the dispersion of the dressed
impurity is a periodic function E(P ) = E(P + 2π~n).
Owing to the quadratic dispersion near P = 0, impurity
motion costs less energy for a given momentum than the
softest excitations of the liquid, i.e., phonons with lin-
ear dispersion. This fact implies that impurity motion,
while possessing a periodic dispersion, also defines the
lower edge of the many-body continuum, above which
(shaded grey, Fig. 1) there exist excitations comprised
of the moving impurity and phonons [11–14]. Explicit
examples demonstrating these features are furnished by
models solvable via Bethe Ansatz [15–17]. A dramatic
consequence of the dispersion periodicity is the possibil-
ity of observing Bloch oscillations of a driven impurity in
1D in the absence of a lattice [18, 19].

The same picture of momentum transfered to the fluid
at no energy cost leads to the prediction of vanishing Lan-
dau critical velocity in 1D [20, 21]. It was shown that an
infinitely massive object moving with any nonzero veloc-
ity with respect to the background nucleates phase slips
corresponding to one quantum 2π~n of total momentum
transferred to the fluid. The finite rate of this process
can then be related to the energy and momentum dis-
sipation in the liquid, precluding superfluidity. On the
other hand, a mobile impurity with finite mass M can
propagate without dissipation at zero temperature with
velocity given by slope of the dispersion V = ∂E/∂P .
Hence, the maximum slope of the dispersion defines a
non-zero critical velocity for light mobile impurities.

The main result of this work is the prediction that the
above regimes of heavy and light impurities are separated
by a quantum phase transition taking place at a critical
mass Mc, given by Eq. (3). We show that above the crit-
ical mass the many-body ground state in a total momen-
tum sector P has cusps at P = ±~πn,±3~πn, . . ., while
the impurity dispersion develops a swallowtail structure
with metastable branches shown in Fig. 1. In this case
the true thermodynamic critical velocity Vc, given by the
maximal slope of the many-body ground state, should be
distinguished from the dynamic critical velocity Vc ob-
tained from the maximal slope of the metastable branch.
It can be shown that for M � Mc the thermodynamic
critical velocity is inversely proportional to M consistent
with the infinite mass limit of Refs. [20, 21].

Metastability and two definitions of critical velocity.
For a concrete example of how a metastable impurity
dispersion can arise, let us take our fluid to be a weakly
interacting Bose gas. At the mean field level, appropriate
for weak interactions, the condensate wavefunction devel-
ops a phase drop Φ across the impurity located at X. In
the limit of strong coupling between gas and impurity,
the latter gives rise to the Josephson term

Hd(Φ) = −nVc cos Φ (1)

(we have set ~ = 1) in the impurity energy. Here Vc

is the dynamical critical velocity which depends on the
details of the impurity. The phase drop inevitably creates
a background supercurrent contributing a term nΦ to the
total momentum P . The total energy of the impurity and
the background can then be written as

H(P,Φ) =
1

2M
(P − nΦ)2 +Hd(Φ) (2)

The first term is the kinetic energy of the impurity mov-
ing with velocity V = (P−nΦ)/M, whereM is the total
mass of the impurity and induced depletion cloud. As we
shall see one can assumeM'M for a sufficiently heavy
impurity.

The phase drop Φ represents a collective coordinate
characterizing the state of the impurity equilibrated with
the background [19]. Its value is determined from the re-
quirement of the minimum of the total energy (2) leading
to the matching P − nΦ = MVc sin Φ of the Josephson
current nVc sin Φ to the current nV experienced by the
impurity in its rest frame. For sufficiently large mass
M > Mc this equation has several solutions correspond-
ing to different arrangements of the impurity and the
background. The total energy H(P,Φ) in Eq. (2) can
therefore have minima for several values of the phase drop
Φ for a given value of the total momentum P . Plotting
the corresponding energies results in a typical swallowtail
structure for the dispersion, see Fig. 1.

Following the global minimum E−(P ) of the disper-
sion one sees that it develops cusps at the crossing points
P = ±πn,±3πn, . . . corresponding to a first order transi-
tion as a function of the total momentum P . In addition
to the true ground state E−(P ) there is also a metastable
branch E+(P ) corresponding to local minimum. The
minima corresponding to E−(P ) and E+(P ) are sepa-
rated by the maximum. At the termination points Pt

the maximum merges with the local minimum at Φ = Φt

and the metastable branch ceases to exist. The critical
mass Mc for the swallowtail catastrophe can be estimated
from the simple model Eq. (2) as

Mc = πn/Vc = Km(c/Vc) , (3)

where K = πn/mc is the Luttinger parameter of the
liquid depending on the speed of sound c. For a strongly
repulsive impurity in a weakly interacting background
Mc � m since K � 1 and c� Vc, justifying a posteriori
the assumption M'M .

For M � Mc the termination point corresponds
to sin Φt = ±1 and the mass-independent velocity
∂E+/∂P = ±Vc. In contrast, the thermodynamic crit-
ical velocity, defined with the help of the stable branch
Vc = ∂E−/∂P , behaves as 1/M resulting in zero critical
velocity for infinitely heavy impurity [20, 21].

Quantum fluctuations can smear the transition by pro-
ducing a mechanism for the decay of the metastable
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branch [14]. The metastable branch E+(P ) is well de-
fined as long as the decay rate Γ(P ) to the lower branch
satisfies Γ(P ) � E+(P ) − E−(P ) ≈ 2Vc|P − πn|. We
show below that Γ(P ) vanishes as a power law near the
crossing points, Γ(P ) ∝ |P − πn|α for P → πn with the
exponent α given in Eq. (7). Self-consistency therefore
requires α > 1. Hence α = 1 is the condition defining the
transition between the two classes of dispersion curves,
and corresponds to M = Mc [14].

Before proceeding we note that the qualitative fea-
tures discussed above in no way depend upon the specific
model Eq. (1) and occur (for example) in the dispersion
relation of a particle moving in a Bose gas described by
the Gross–Pitaevskii equation, valid for arbitrary cou-
pling between the gas and impurity [22].

Depleton model. We now introduce a framework to
describe the periodic impurity dispersion, the metastable
branch, and its decay in the general case. The moving
depleton, i.e. impurity dressed by the liquid depletion, is
characterized by a number of particles N expelled from
its core in addition to the phase drop Φ. The existence
of the two collective slow coordinates is associated with
the presence of the two conservation laws: number of
particles and momentum [19]. The depleton’s dynamics
is then specified by the following Hamiltonian

H(P,Φ, N) =
1

2M
(P − nΦ)2 + µN +Hd(Φ, N). (4)

Here Hd is the Φ-periodic energy function of the deple-
tion cloud, µ is the chemical potential of the liquid in
the absence of the impurity and M = M − mN . In
the limit of strongly repulsive impurity the dynamics of
N is frozen and Hd(Φ, N) reduces to the simple Joseph-
son form Eq. (1). If the massM is sufficiently large, the
Hamiltonian (4) (being almost a periodic energy function
of Φ) possesses many metastable minima in addition to
the absolute one.

We wish to determine the tunneling rate from the
above mentioned metastable minima to the ground state
branch at the same momentum P . Such tunneling is ac-
companied by a change in the phase drop ∆Φ and num-
ber of depleted particles ∆N , despite the momentum of
both states being equal [23]. Therefore one must know
the Lagrangian governing the dynamics of the collective
variables Φ and N . As shown in Ref. [19], this requires
the introduction of, and coupling to, the phonon subsys-
tem. The latter may be described by small deviations of
the density, ρ(x, t), and velocity, u(x, t), fields from their
unperturbed values. It is convenient to introduce the su-
perfluid phase ϕ(x, t) and the displacement field ϑ(x, t)
defined by u = ∂xϕ/m and ρ = ∂xϑ/π.

The effective action governing these harmonic degrees
of freedom is that of the Luttinger liquid [25, 26]

SLL =
1

π

∫
dtdx

[
−∂xϑ∂tϕ−

c

2K
(∂xϑ)2 − cK

2
(∂xϕ)2

]
,

(5)

while their coupling to the depleton degrees of freedom
takes a universal form [19, 24],

Sint =

∫
dt
[
−Φ̇ ϑ(X, t)/π − Ṅϕ(X, t)

]
. (6)

It is the phonon subsystem which must supply the macro-
scopic momentum n∆Φ and take away ∆N particles from
the depleton. Near the point P = πn, the phonons have
only a small amount of energy ε with which to do this.
This low-probability event, or ‘under-the-barrier’ evolu-
tion of the phononic system, can be described in imagi-
nary time by performing the Wick rotation t → −iτ in
Eqs. (5), (6). We have delegated details of the tunnel-
ing calculation to a short section in the Supplemental
Material [22]. We find for the tunneling rate

Γ(ε) ∼ εα; α = 2K

[(
∆Φ

2π

)2

+

(
∆N

2K

)2
]
− 1. (7)

Writing ε = 2Vc |P − πn| gives the momentum depen-
dent tunneling rate advertised earlier.

The logarithmic behavior of the tunneling action [22]
is valid only on the long time-scale τ & l/c, implying the
validity of Eq. (7) is restricted to the regime of small
ε close to P = πn. In such a case the velocities of
the upper and lower branches of the dispersion are es-
sentially opposite and close to ±Vc, while the change in
number of particles ∆N , being an even function of veloc-
ity, is negligible. As a result one arrives at the exponent
α = 2K(∆Φ/2π)2 − 1. This single collective coordinate
limit, i.e. ∆N = 0, agrees with the previous result of
Ref. [28] (cf. Eq. (7.20) therein) based on a phenomeno-
logical model of tunneling between two minima in the
presence of coupling to an environment. Their results
also show that a finite temperature T acts as a low en-
ergy cut-off, namely Γ ∼ T α, ε � T (see Eqs. (5.30),
(7.18) of Ref. [28]).

Higher order processes involve tunneling back and
forth between the two minima that become degenerate
for ε = 0, leading to an effective spin-boson or anisotropic
Kondo description [14]. The inclusion of such processes
is only necessary if α < 1, meaning that tunneling is a
relevant perturbation. This leads to the rounding out of
the cusp in the dispersion E−(P ) at P = πn, and the dis-
appearance of the metastable branch. Thus α = 1 is the
exact condition determining the critical mass M = Mc.

In the infinite mass limit with fixed velocity V =
P/M Eq. (4) becomes essentially a washboard potential,
Fig. 1c, H −→

M→∞
nV Φ + Hd(Φ) (change ∆N between

adjacent minima goes to zero in this limit). Thus the
change ∆Φ between the adjacent minima is exactly 2π,
while the energy difference is ε = 2πnV . As a result,
one finds α = 2K − 1 and the power law dependence of
the tunneling rate Γ ∼ V 2K−1 [29] on the velocity in full
agreement with the result of Ref. [20, 21].
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FIG. 2. Impurity velocity (solid) in units of the dynamic
critical velocity Vc as a function of time in units of the period
T = 2πn/F . The drift velocity is denoted by VD (dashed) and
is displayed in the inset as a function of the applied force. Due
to quantum tunneling near P = πn, the drift velocity goes to
zero as a power law with exponent 1/(α + 1) (solid, inset)
given by Eq. (9) for F < Fc and approaches the semi-classical
result for F > Fc (dashed, inset) [22].

In the limit of large energy detuning, i.e., away from
P = πn, the tunneling rate does not take the form (7). In
this region the barrier is small and the impurity emerges
from under it with only slightly less energy, despite the
large detuning between the branches (see Fig. 1 insets).
Therefore most of the descent from the upper branch
corresponds to viscous relaxation in real time and not an
under-the-barrier tunneling trajectory. Thus, near the
termination momentum Pt ' MVc, the potential may
be approximated by a cubic polynomial. The dissipa-
tive tunneling through such a potential was described in
Ref. [30], leading to the escape rate Γ ∝ e−S̄ , where

S̄ = 2K
Pt − P√
M2V 2

c − n2
. (8)

We see that for both large and small energy detuning,
Eqs. (7), (8) the tunneling action scales with the Lut-
tinger parameter K.

One way to explore the metastable branches of the dis-
persion is by applying an external force F to the impu-
rity and studying the ensuing dynamics. For sufficiently
strong force the driven impurity overshoots the ground
state branch and follows the metastable branch until it
either tunnels or reaches the termination point Pt (see
Fig. 1). The energy dissipated per cycle, ε, must be sup-
plied by external force: FVD = ε/T resulting in the drift
velocity VD = ε/2πn. Here T = 2πn/F is the period of
the motion.

Tunneling is negligible when ΓT � 1, which occurs
if the force is sufficiently large. In such a case the ex-
ternal force drives the impurity all the way up to the
termination point Pt. It then loses the energy minimum

and relaxes to the lower branch, emitting phonons. As
a result, the energy dissipated per cycle and thus drift
velocity are essentially independent of the applied force.
This is in stark contrast to the case of M < Mc, where
the phonon emission due to dipole radiation gives rise to
a linear in F drift velocity and hence a finite impurity
mobility σ = VD/F [19].

The impurity velocity takes the form of a saw-tooth
trajectory, experiencing a slow build-up and a sudden
drop when the velocity reaches Vc, see Fig. 2. As a
function of the mass, VD saturates to the critical ve-
locity in the limit M → ∞. This is most easily seen
by noting that in such a limit the energy drop occurs
between two adjacent and essentially parallel parabolas:
ε = 2πnVD = P 2/2M − (P − 2πn)2/2M → 2πnVc. On
the same grounds, the amplitude of the saw-tooth oscil-
lations is a decreasing function of M going to zero in the
infinite mass limit.

Quantum effects become dominant only if the time
spent on a metastable branch is comparable with the
inverse tunneling rate: ΓT & 1. Thus, the effect of quan-
tum tunneling plays a role only for very small forces. In
this limit, the impurity is likely to tunnel at a momen-
tum immediately above P = πn, right when it enters the
metastable branch. Using the rate Eq. (7) to calculate
the tunneling-averaged energy drop 〈ε〉, we find for the
drift velocity [22]

VD =
c

K

(
F

Fc

) 1
α+1

. (9)

The non-analytic dependence of the drift on small forces
is the result of the cusp of the ground state energy at
P = πn and implies the divergence of the mobility σ =
VD/F as F → 0 across the M = Mc transition (see inset
of Fig. 2). At finite temperature T the mobility is not
given by σ ∼ T −α as might be expected due to the finite
tunneling rate Γ ∼ T α near the cusp. Strictly speaking,
it is given by σ ∼ T −4 due to two-phonon thermal Raman
scattering [18, 19, 31] which results in velocity saturation
below Vc as F → 0. In practice, therefore, it is necessary
to work at sufficiently low temperatures and finite drives
to overcome such saturation and allow the impurity to
explore the full range of momentum where metastable
branches become important.

In conclusion, we have shown that the dispersion re-
lation of a mobile impurity undergoes a sudden change
when the mass of the impurity exceeds a certain critical
value. The latter depends on the interaction parameter
within the host liquid and thus may be varied experimen-
tally. The predicted transition can be probed by applying
an external force and monitoring either impurity velocity
or excitations of the host liquid. The change of disper-
sion also affects the oscillation frequency and dissipation
of the impurity in the trapping potential. With investi-
gations of impurity motion in 1D atomic gases now un-
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derway [5, 7, 8], we hope that these predictions will guide
future experiments.
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