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We theoretically investigate the coupling of electron spin to vibrational motion due to curvature-
induced spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate
that, with current capabilities, a quantum dot with an odd number of electrons can serve as a realiza-
tion of the Jaynes-Cummings model of quantum electrodynamics in the strong-coupling regime. A
quantized flexural mode of the suspended tube plays the role of the optical mode and we identify two
distinct two-level subspaces, at small and large magnetic field, which can be used as qubits in this
setup. The strong intrinsic spin-mechanical coupling allows for detection, as well as manipulation
of the spin qubit, and may yield enhanced performance of nanotubes in sensing applications.

Recent experiments in nanomechanics have reached
the ultimate quantum limit by cooling a nanomechani-
cal system close to its ground state[1]. Among the vari-
ety of available nanomechanical systems, nanostructures
made out of atomically-thin carbon-based materials such
as graphene and carbon nanotubes (CNTs) stand out due
to their low masses and high stiffnesses. These properties
give rise to high oscillation frequencies, potentially en-
abling near ground-state cooling using conventional cryo-
genics, and large zero-point motion, which improves the
ease of detection[2, 3].

Recently, a high quality-factor suspended CNT res-
onator was used to demonstrate strong coupling be-
tween nanomechanical motion and single-charge tunnel-
ing through a quantum dot (QD) defined in the CNT[4].
Here, we theoretically investigate the coupling of a single
electron spin to the quantized motion of a discrete flexu-
ral mode of a suspended CNT (see Fig.1), and show that
the strong-coupling regime of this Jaynes-Cummings-
type system is within reach. This coupling provides
means for electrical manipulation of the electron spin
via microwave irradiation, and leads to strong nonlinear-
ities in the CNT’s mechanical response which may po-
tentially be used for enhanced functionality in sensing
applications[5–7].

In addition to their outstanding mechanical proper-
ties, carbon-based systems also possess many attrac-
tive characteristics for information processing applica-
tions. The potential for single electron spins in QDs to
serve as the elementary qubits for quantum information
processing[8] is currently being investigated in a variety
of systems. In many materials, such as GaAs, the hyper-
fine interaction between electron and nuclear spins is the
primary source of electron spin decoherence which lim-
its qubit performance (see e.g., [9]). However, carbon-
based structures can be grown using starting materials
isotopically-enriched in 12C, which has no net nuclear
spin, thus practically eliminating the hyperfine mecha-
nism of decoherence[10], leaving behind only a spin-orbit
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FIG. 1: Schematic of a suspended carbon nanotube (CNT)
containing a quantum dot filled with a single electron spin.
The spin-orbit coupling in the CNT induces a strong coupling
between the spin and the quantized mechanical motion u(z)
of the CNT.

contribution[11, 12]. Furthermore, while the phonon con-
tinuum in bulk materials provides the primary bath en-
abling spin relaxation, the discretized phonon spectrum
of a suspended CNT can be engineered to have an ex-
tremely low density of states at the qubit (spin) energy
splitting. Thus very long spin lifetimes are expected off-
resonance[13]. On the other hand, when the spin splitting
is nearly resonant with one of the high-Q discrete phonon
“cavity” modes, strong spin-phonon coupling can enable
qubit control, information transfer, or the preparation of
“Schrödinger cat”-like entangled states.

The interaction between nanomechanical resonators
and single spins was recently detected[14], and has been
theoretically investigated[15, 16] for cases where the spin-
resonator coupling arises from the relative motion of the
spin and a source of local magnetic field gradients. Such
coupling is achieved, e.g., using a magnetic tip on a vi-
brating cantilever which can be positioned close to an
isolated spin fixed to a non-moving substrate. Creating
strong, well-controlled, local gradients remains challeng-
ing for such setups. In contrast, as we now describe, in
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FIG. 2: Energy levels of the orbital ground state of the QD
with four-fold (spin and valley) degeneracy, as a function of
the magnetic field parallel (B‖) and perpendicular (B⊥) to
the CNT axis. The boxed areas indicate the working regime
for the spin qubit (S) and Kramers qubit (K), the latter be-
ing operated either in a longitudinal (Kz) or perpendicular
(Kx) magnetic field. Parameter values [30]: ∆so = 170µeV,
∆KK′ = 12.5µeV, µorb = 330µeV/T.

CNTs the spin-mechanical coupling is intrinsic, supplied
by the inherent strong spin-orbit coupling [17–20] which
was recently discovered by Kuemmeth et al.[21].

Consider an electron localized in a suspended CNT
quantum dot (see Fig. 1). Below we focus on the case of
a single electron, but expect the qualitative features to be
valid for any odd occupancy (see Ref.[22]). We work in
the experimentally-relevant parameter regime where the
spin-orbit and orbital-Zeeman couplings are small com-
pared with the nanotube bandgap and the energy of the
longitudinal motion in the QD. Here, the longitudinal
and sublattice orbital degrees of freedom are effectively
frozen out, leaving behind a nominally four-fold degen-
erate low-energy subspace associated with the remaining
spin and valley degrees of freedom (see Refs.[23, 24]).

A simple model describing the spin and valley dynam-
ics in this low-energy QD subspace, incorporating the
coupling of electron spin to deflections associated with
the flexural modes of the CNT[25, 26], was introduced
in Ref.[27]. In principle, the deformation-potential spin-
phonon coupling mechanism[11] is also present. The de-
flection coupling mechanism is expected to dominate at
long phonon wavelengths, while the deformation poten-
tial coupling should dominate at short wavelengths (see
discussion in [27]). For simplicity we consider only the de-
flection coupling mechanism, but note that the approach
can readily be extended to include both effects.

The Hamiltonian describing this system is [24, 27, 28]

H =
∆so

2
τ3(s·t)+∆KK′τ1−µorbτ3(B·t)+µB(s·B), (1)

where ∆so and ∆KK′ denote the spin-orbit and inter-
valley couplings, τi and si are the Pauli matrices in val-

ley and spin space (the pseudospin is frozen out for the
states localized in a QD), t is the tangent vector along
the CNT axis, and B denotes the magnetic field. Note
that the spin-orbit coupling has contributions which are
diagonal and off-diagonal in sublattice space [18–20, 22].
When projected onto to a single longitudinal mode of the
quantum dot, the effective Hamiltonian given above de-
scribes the coupling of the spin to the nanotube deflection
at the location of the dot [24].

For a nominally straight CNT we take t pointing along
the z direction, giving s · t = sz and B · t = Bz. Here
we find the low-energy spectrum shown in Fig. 2. The
two boxed regions indicate two different two-level systems
that can be envisioned as qubit implementations in this
setup: we define a spin qubit[8] (S) at strong longitudinal
magnetic field, near the value B∗ of the upper level cross-
ing, and a mixed spin-valley or Kramers (K) qubit[28],
which can be operated at low fields applied either in the
longitudinal (Kz) or perpendicular (Kx) directions.

We now study how these qubits couple to the quantized
mechanical motion of the CNT. For simplicity we con-
sider only a single polarization of flexural motion (along
the x-direction), assuming that the two-fold degeneracy
is broken, e.g., by an external electric field. A general-
ization to two modes is straightforward.

A generic deformation of the CNT with deflection u(z)
makes the tangent vector t(z) coordinate-dependent. Ex-
panding t(z) for small deflections, we rewrite the cou-
pling terms in Hamiltonian (1) as s · t ' sz + (du/dz)sx
and B · t ' Bz + (du/dz)Bx. Expressing the deflec-
tion u(z) in terms of the creation and annihilation op-
erators a† and a for a quantized flexural phonon mode,
u(z) = f(z) `0√

2
(a+ a†), where f(z) and `0 are the wave-

form and zero-point amplitude of the phonon mode, we
find that each of the three qubits (S, Kx, Kz) obtains a
coupling to the oscillator mode which we describe as

H

~
=
ωq

2
σ3+g(a+a†)σ1+ωpa

†a+2λ(a+a†) cosωt. (2)

Here the matrices σ1,3 are Pauli matrices acting on the
two-level qubit subspace, and we have included a term de-
scribing external driving of the oscillator with frequency
ω and coupling strength λ, which can be achieved by
coupling to the ac electric field of a nearby antenna[4].
Below we describe the dependence of the qubit-oscillator
coupling g on system parameters for each qubit type (S,
Kx, or Kz). The derivation of Eq. (2) is detailed in [24].

For the spin qubit (S), the relevant two-fold degree of
freedom is the spin of the electron itself. Therefore in
Eq.(2) we have σ3 = sz and σ1 = sx, and the qubit
levels are split by the Zeeman energy, measured relative
to the value B∗ where the spin-orbit-split levels cross,
~ωq = µB(B − B∗). A spin magnetic moment of µB is
assumed, and B∗ ≈ ∆so/2µB for ∆KK′ � ∆so. For the
qubit-resonator coupling, we find g = ∆so〈f ′〉`0/2

√
2,

independent of B. Here, 〈f ′〉 is the derivative of the
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waveform of the phonon mode integrated over the length
of the QD.

For a symmetric QD, positioned at the midpoint of the
CNT, the coupling matrix element proportional to 〈f ′〉
vanishes for the fundamental and all even harmonics (the
opposite would be true for the deformation-potential cou-
pling mechanism). The cancellation is avoided for a QD
positioned away from the symmetry point of the CNT,
or for coupling to odd harmonics. Here, for concreteness,
we consider coupling of a symmetric QD to the first vi-
brational harmonic of the CNT. Using realistic param-
eter values [4, 21, 29, 30], L = 400 nm, `0 = 2.5 pm,
∆so = 370 µeV, ∆KK′ = 32.5 µeV, µorb = 1550 µeV/T,
and ωp/2π = 500 MHz, we find g/2π ≈ 0.56 MHz, irre-
spective of the magnetic field strength B along the CNT.

For the Kramers qubits (Kx and Kz), both ωq and
g depend on B. The qubit splitting for the Kx
qubit is controlled by the perpendicular field, ~ωq =
µB(2∆KK′/∆)Bx, while for the Kz qubit, it is controlled
by the longitudinal field ~ωq = (µB + µorb(∆so/∆))Bz,

where ∆ =
√

∆2
so + 4∆2

KK′ denotes the zero-field split-
ting between the two Kramers pairs. Resonant coupling
occurs when ωq = ωp. This condition sets the relevant
value of Bx (Bz) in the case of the Kx (Kz) qubit; the
parameters above yield Bx ≈ 103 mT (Bz ≈ 0.6 mT).

The qubit-cavity coupling for the Kx qubit increases
linearly with the applied perpendicular field, ~g =
−(〈f ′〉`0/

√
2)(µorb∆so/∆ + µB∆2

so/∆
2)Bx, while for the

Kz qubit it scales with the longitudinal field, ~g =
(〈f ′〉`0/

√
2)(µorb2∆KK′∆so/∆

2)Bz. Using the values of
Bx and Bz obtained above, we estimate couplings of
g/2π ≈ 0.49 MHz for the Kx qubit, and g/2π ≈ 0.52 kHz
for the Kz qubit. Thus the coupling for the Kx qubit is
comparable to that of the spin qubit, while the coupling
of the Kz qubit is much weaker. Therefore, we restrict
our considerations to the spin and Kx qubits below.

Ref. 4 reports the fabrication of CNT resonators with
quality factors Q ≈ 150,000. We take Q = 63,000 for
the following estimate. Together with the oscillator fre-
quency ωp/2π = 500 MHz, this value of Q implies an
oscillator damping rate of Γ ≈ 5 · 104 s−1 � g. Due
to the near-zero density of states of other phonon modes
at ωq, it is reasonable to assume a very low spontaneous
qubit relaxation rate γ. These observations suggest that
the so-called ‘strong coupling’ regime of qubit-oscillator
interaction, defined as Γ, γ � g, can be reached with
CNT resonators.

To quantify the system’s response in the anticipated
parameter regime, we study the coupled qubit-oscillator
dynamics using a master equation which takes into ac-
count the finite lifetime of the phonon mode as well as
the non-zero temperature of the external phonon bath.
For weak driving, λ � ωp, and ωp ≈ ωq ≈ ω � g,
we move to a rotating frame and use the rotating wave
approximation (RWA) to map the Hamiltonian, Eq.(2),

into Jaynes-Cummings form[31]

HRWA

~
=
ω̃q

2
σ3+g(aσ++a†σ−)+ ω̃pa

†a+λ(a+a†), (3)

where ω̃i = ωi − ω. Including the non-unitary dynamics
associated with the phonon-bath coupling, the master
equation for the qubit-oscillator density matrix ρ reads:

ρ̇ = − i
~

[HRWA, ρ] + (nB + 1)Γ
(
aρa† − 1

2
{a†a, ρ}

)
+ nBΓ

(
a†ρa− 1

2
{aa†, ρ}

)
, (4)

where nB = 1/(e~ωp/kBT − 1) is the bath-mode Bose-
Einstein occupation factor, and kB is the Boltzmann con-
stant.

Due to the phonon damping, in the long-time limit
the system is expected to tend towards a steady state,
described by the density matrix ρ̄. We study these
steady states, found by setting ρ̇ = 0 in Eq.(4), using
both numerical and semiclassical analytical methods. In
Figs. 3a,c we show the steady-state phonon occupation
probability distribution P (δω, n) as a function of the
drive frequency–phonon frequency detuning δω = −ω̃p

and the phonon occupation number n, for the case where
the qubit and oscillator frequencies are fixed and degen-
erate, ωq = ωp (see caption for parameter values). Pan-
els a and c compare the cases with and without qubit-
oscillator coupling. In Figs. 3b and 3d we show the aver-
aged phonon occupation number n̄(δω) =

∑
n nP (δω, n),

which is closely related to the mean squared resonator
displacement in the steady state: X2 = x2 = `20(n̄ + 1

2 ).
For g 6= 0, we observe a splitting of the oscillator reso-
nance, which is characteristic of the coupling to the two-
level system, and can serve as an experimental signature
of the qubit-oscillator coupling. For drive frequencies
near the split peaks, the phonon number distribution is
bimodal (Fig. 3f) showing peaks at n ≈ 0 and at high-n,
indicating bistable behavior (see below).

For strong excitation, where the mean phonon occupa-
tion is large, we expect a semiclassical approach to cap-
ture the main features of the system’s dynamics[32, 33].
Extending the approach described in [32] to include dis-
tinct values of the qubit, oscillator, and drive frequencies,
ωq, ωp, and ω, we derive semiclassical equations of mo-
tion for the mean spin and oscillator variables (see [24]).
The steady-state values of the mean squared oscillator
amplitude obtained from the resulting nonlinear system
are shown in Fig. 3e. In the vicinity of the split peak
we find two branches of stable steady-state solutions, in-
dicative of bistable/hysteretic behavior[4]. The semiclas-
sical results in Fig. 3e are in correspondence with the
phonon number distribution in Fig. 3c, and explain its
bimodal character. Similar oscillator instabilities have
been used as the basis for a sensitive readout scheme in
superconducting qubits[34], and may potentially be use-
ful for mass or magnetic field sensing applications where
small changes of frequency need to be detected.
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FIG. 3: Response of the spin-oscillator system. (a) Phonon number probability distribution P (n, δω), (b) average phonon
occupation n̄ and root mean squared displacement X of the uncoupled driven CNT resonator (g = 0), as functions of the drive
frequency–oscillator frequency detuning δω = ω − ωp. The parameters are T = 50 mK, ωp/2π = 500 MHz, Γ = 5 · 104 s−1

and λ/2π = 0.027 MHz. The same quantities are plotted in (c) and (d) for a resonantly coupled qubit-oscillator system (i.e.,
ωq = ωp), with coupling constant g/2π = 0.5 MHz and further parameters as in (a) and (b). (e) Steady-state oscillator
response from the semiclassical calculation, corresponding to the parameters of (c) and (d). The green solid (purple dashed)
lines describe stable (unstable) solutions. (f) Bimodal phonon number distribution, taken along the dashed vertical line of (c).
(g,h) Root mean squared value X of the resonator amplitude in the coupled spin qubit - oscillator system at (g) T = 0 and (h)
T = 50 mK, as functions of magnetic field detuning δB (detuning the qubit frequency away from resonance with the oscillator)
and drive frequency–oscillator frequency detuning δω.

To predict the oscillator response to be detected via
a charge sensor (see below), we solve for the station-
ary state of Eq. (4) directly for a range of driving fre-
quencies, qubit-oscillator detunings (set by the magnetic
field), and temperatures T . In Fig. 3g (3h), we show
the T = 0 (T > 0) root mean squared oscillator am-
plitude X ∝

√
n̄+ 1/2 as function of magnetic field B

and drive frequency, for the case of a spin (S) qubit.
The value δB = 0 corresponds to resonant coupling
ωq = ωp. These results also apply for the Kx qubit,
if the magnetic field axis is adjusted appropriately. In
the zero-temperature case, only half of the eigenstates
~ω± ≈ ~ωp ∓ ~g2/(ωp − ωq) of Eq. (3) can be efficiently
excited by the drive at fixed δB, giving rise to the upper
(lower) feature in Fig. 3g for δB < 0 (δB > 0). However,
for T & ~ωq, both branches of the Jaynes-Cummings lad-
der can be efficiently excited (Fig. 3h). This is a distinct
and experimentally accessible signature of the strong cou-
pling at finite temperature. Note that the vacuum Rabi
splitting is also observed (see arrows in Fig. 3d), but fea-
tures arising from nonlinearity in the strongly driven sys-
tem dominate by more than two orders of magnitude.

Displacement detection of nanomechanical systems is
possible using charge sensing[5, 35], where the conduc-
tance of a mesoscopic conductor, such as a QD or
quantum point contact, is modulated via capacitve cou-
pling to the charged mechanical resonator. Further-
more, the qubit state itself can be read-out using spin-

detection schemes developed for semiconductor QDs[36],
or by a dispersive readout scheme like that commonly
used in superconducting qubits coupled to microwave
resonators[37]. The dispersive regime can be rapidly ac-
cessed by, e.g., tuning the resonator frequency using dc
gate pulses which control the tension in the CNT[4].

In summary, we predict that strong qubit-resonator
coupling can be realized in suspended CNT QDs with
current state-of-the-art devices. The coupling described
here may find use in sensing applications, and in spin-
based quantum information processing, where the CNT
oscillator enables electrical control of the electron spin,
and, with capacitive couplers, may provide long-range
interactions between distant electronic qubits[16, 38].
Combined with control of the qubit via electron-spin-
resonance[39], the mechanism studied here could be uti-
lized for ground-state cooling and for generating arbi-
trary motional quantum states of the oscillator [15].

This work was supported by the Marie Curie grant
CIG-293834 and the QSpiCE program of ESF (AP), DFG
under the programs FOR 912 and SFB 767 (PS and GB),
NSF grants DMR-090647 and PHY-0646094 (MR), and
The Danish Council for Independent Research — Natural
Sciences (KF).

Note: While completing this manuscript, we became
aware of a related work [40] that describes the theory of
the spin-phonon coupling in a CNT resonator QD, and
its consequences in the spin blockade transport setup.
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