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We argue that dynamics of gapless Fractional Quantum Hall Edge states is essentially non-linear
and that it features fractionally quantized solitons with charges −νe propagating along the edge.
Observation of solitons would be a direct evidence of fractional charges. We show that the non-
linear dynamics of the Laughlin’s FQH state is governed by the quantum Benjamin-Ono equation.
Non-linear dynamics of gapless edge states is determined by gapped modes in the bulk of FQH
liquid and is traced to the double boundary layer (overshoot) of FQH states. The dipole moment
of the layer η = 1−ν

4π
is obtained in paper. Quantum hydrodynamics of FQH liquid is outlined.

PACS numbers: 73.43.Cd,73.43.Lp

1. Introduction and Results. In a Fractional Quantum
Hall state electrons collectively constitute an incompress-
ible liquid almost free from dissipation. Excitations in
this liquid are gapped by an energy ∆ν determined by
the Coulomb interaction[1, 2]. The gap is large (typi-
cally ∆1/3 ∼ 10K) compared with mK temperature, but
small compared with the cyclotron energy ∼ 25meV ).
The only low energy current carrying states in a FQH
liquid are edge states localized on the boundary [3]. Edge
states provide a valuable tool to probe FQH states.

In most FQH states the excitation gap is large com-
pared to the energy of long wave edge states, and for that
reasons is commonly neglected. The standard approach
to the theory of Edge states starts from the Chern-Simons
action in the bulk [4]. This action has no scale. It ne-
glects gapped bulk modes but focuses on braiding proper-
ties of FQH states. The Hamiltonian of this theory differs
from zero only by a confining potential. The boundary
states are long-wave chiral bosons with the algebra

[f(x), fH(x′)] =
2ν

π
∇xδ(x− x′), (1)

propagating according to the linear wave equation

ḟ − c0∇xf = 0. (2)

Here fH = 1
π

∫ f(x′)−f(x)
x′−x dx′ is the Hilbert transform of

f(x), the unperturbed droplet occupies the half plane
y < 0, x is a coordinate along the boundary. The sound
velocity c0 = ~−1`2B |∇yU | is determined by the slope

of the confining potential U(y), `B =
√

Φ0/2πB is the
magnetic length and Φ0 = hc/e.

This theory assumes that a FQH state does not change
toward the boundary and neglects electric polarization
caused by edge waves. This happens if the curvature of
the potential is small compared to the gap `2B∇2

yU � ∆ν ,

but a slope is larger than electric field `2B∇yU � e2. We
accept these conditions.

Physics missed by this otherwise successful theory can
be seen in the following setting. Let us suddenly perturb
the edge by a classical instrument, say RF-source (whose

FIG. 1: Boundary waves: the boundary layer is highlighted
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spatial extent is larger than magnetic length `B) and then
release the system. A smooth semiclassical density pro-
file f0(x) will occur, Fig. 1. How does it propagate along
the edge? The wave equation (2) suggests that the initial
profile translates as f(x, t) = f0(x−c0t) without changes.
This may be true shortly after the perturbation, but at
time of order of ~/∆ν the profile is expected to change.
This time is short. In typical ν = 1/3 samples it is short,
about ∼ 1ps [1], much less than time scales of dissipa-
tion. We show that at that already at that time the wave
equation fails, giving rise to new important effects.

Corrections to linear waves (2) come from few sources:
the curvature of the confining potential, mixing with
higher Landau levels, disorder, and, more interestingly,
the interaction between the gapless edge and gapped bulk
modes. The latter is the leading effect in FQHE. It is the
subject of the paper. We start by listing major results.

(i) We argue that the wave equation receives impor-
tant corrections proportional to the scale κ ∼ ∆ν`

2
B/~ of

gapped excitations omitted in the Chern-Simons action.
In this paper we focus only on the simplest FQH state
with a single branch of excitations (Laughlin’s state). We
show that the quantum equation for edge modes in the
Laughlin state is Quantum Benjamin-Ono equation

ḟ− c0∇xf − κ∇x
(
f2

2
− η · ∇xfH

)
= 0, η =

1− ν
4π

(3)

The new terms in brackets cause new phenomena. One is
particular interesting is fractionally charged edge solitons.

The meaning of the chiral boson is seen from its value
on coherent state with an electronic density ρ(x, y). It is

a boundary density f(x) =
∫ y(x)

0
ρ(x, y)dy, where y(x) is

a boundary displacement counted from an unperturbed
boundary y = 0. The bosons act in the chiral Fock space,
where i~πfH +ν∇xπf=0. Here πf ≡ −i~ δ

δf is a momen-
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tum of f . The constraint yields the algebra (1).
(ii) The most interesting and important term in this

equation is the dispersion η · ∇xfH . This term reflects
the double boundary layer or overshoot of the equilibrium
Laughlin’s state. That is: a difference of one-particle
density ρ of the Laughlin state and the density ρI of
integer QH state ν = 1 of the same number of particles
with charges νe is singular on the boundary

ρ(y) ≈ ρI(y) + ηδ′(y). (4)

The double layer is illustrated on the Fig. 2. The coef-
ficient η is the dipole moment of the droplet. We show
that

η =

∫
y(ρ− ρI)dy =

1− ν
4π

. (5)

(iii) The non-linear edge theory follows from quantum
hydrodynamics of the bulk of FQH liquid. We defer a de-
tailed discussion of quantum hydrodynamics in the bulk
to more extended publications. In this letter we outline
only basic points and consider only potential flow.

The non-linear equation (3) previously appeared in two
domains of physics. Its classical version has been derived
by Benjamin [5] in 1967 for inner waves in a deep strati-
fied incompressible fluid with a rapidly changing density
or shear [6]. It is called the Benjamin-Ono equation.

This relation is not accidental: a FQH state is an in-
compressible quantum fluid with a rapidly changing den-
sity and shear at the boundary layer, Eq.(4), Fig. 2.

The quantum Benjamin-Ono equation (qBO) identi-
cal to (2,3) describes the chiral sector of Calogero model
[7, 8]. This relation is not accidental also. Both FQH
and Calogero liquids feature excitations with a fractional
charge. One can treat the result of this paper as a proof of
an anticipated equivalence between Calogero liquid and
FQH Edge states.

The qBO has an intrinsic relation to a boundary Con-
formal Field Theory with the central charge c = 1 −
6ν−1(ν−1)2 situated in the exterior of the droplet. Con-
formal symmetry emerges with respect to deformations
of the boundary of a FQH droplet. Also, qBO has a natu-
ral extension to non-Abelian FQH states. We will discuss
these aspects elsewhere. In this paper we mention a few
major features of qBO [7, 8] and focus on its derivation.

2. Quantum Benjamin-Ono Equation. The qBO is a
Hamiltonian equation. The dispersion term η∇2

xf
H has

the dimension of viscosity but contrary to real viscos-
ity does not produce dissipation. It gives a non-analytic
correction to the dispersion of linear waves

~ (ω(k)− c0k) = κηk|k|. (6)

A noticeable feature of the qBO is that the ”dissipation-
less viscosity” η depends only on the filling fraction ν
and, in this sense, is universal. Contrary, in classical liq-
uids [5, 6] the coefficient η depends on the equation of
state and is not quantized.. This term is similar in origin

to the ”Hall viscosity” [12], but is not directly related. It
is inherent to FQHE, η vanishes for the IQH.

Quantum BO equation has been studied in connection
with Calogero model in [7–9]. We list few major facts.
The equation is integrable despite of being non-local. It
features solitons. There are two branches of solitons: one
is ultrasonic, another is subsonic. Quite remarkably, both
carry quantized electron charges. An ultrasonic soliton
carries an integer of electron charge q = +e. It is a
bump on the edge - a coherent state of an electron. A
subsonic soliton is a coherent state of holes - a dent on
the edge. It carries integer of a fractional charge q = −νe
of an opposite sign. Shapes of the elementary solitons are
especially simple:

fq(x+ c0t) =
q

π

a

a2(x− vqt)2 + 1
, q = 1, −ν. (7)

Velocity of a soliton (relative to the sound) is vq = qκηa is
inversely proportional to the magnetic field. It is propor-
tional to its amplitude a and its charge q. The amplitude
a > 0 is arbitrary, but the charge is quantized.

Benjamin-Ono equation receives corrections from ef-
fects related to electrostatic forces. However fractional-
ized solitons are protected as long as FQH state exists.

There two ways to observe fractional solitons. One is
to generate individual solitons by applying a time de-
pendent voltage protocol eV (t) = ~c0fq(c0t) through a
quantum dot connected to the conductor via a tunnel
barrier [10] and measure a time dependent current at a
distance of from the point contact. Similar measurements
have been done in nanoelectronic devices (see, e.g.,[11]).

Alternative way to observe solitons is through the soli-
ton train. When an RF-source creates a large dent of a
size L � `B in the boundary density which involves a
large number n of electrons, the dent collapses through a
shock wave to oscillatory features which further separate
to a stable a sequence of pulses carried a fraction −νe
of an electronic charge (see e.g.,[7]). This happens very
fast at the time (~/∆ν)L/(n`B) ∼ 1-10ps. Pulses can be
seen through the time dependence of the edge current.

3. Phenomenological Hamiltonian is the starting point
of the analysis. A space where the Hamiltonian acts is the
result of a projection on the first Landau level enforced by
the condition ~ωc � ∆ν . It is the set of states obtained
by a deformation of the Laughlin ground state ψ0 by
holomorphic polynomials. In a radial gauge suitable for
a central-symmetric confining potential coherent states
of this space are

ψ
V

= Z−
1
2

V
e

1
~
∑N
i V (zi)ψ0, ψ0 = ∆βe

−
∑N
i

|zi|
2

4`2
B , (8)

where ∆=
∏N
i>j(zi −zj) and Z

V
is a normalization.

A complex potential V (z) is analytic at infinity and
such that 4πσ = −∆V is real. A meaning of σ is a density
of ”holes”, or vortices, cf. (15). Also a set of permissible
operators is spanned by a product of holomorphic and
anti-holomorphic operators. We denoted the averages
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of symmetric operators in a given V -state as 〈O〉
V

=∫
ψ∗
V
Oψ

V

∏
i d2ri.

These states have been studied in [15]. We mention
only an important sum rule elementary followed from the

value of the dilatation operator
∑
i〈ri·(∇i+∇

†
i )〉V =−2N

1

N

∑
i

〈 r
2
i

2`2B
−Nβ − 1

~
ri · ∇iReV〉

V
= 1− β

2
. (9)

We construct the Hamiltonian based on a few defining
properties: (i) Lauglin’s w.f. is the ground state; (ii)
action of the Hamiltonian preserves the projected space;
(iii) long waves of a FQH liquid are Galilean invariant;
(iv) on closed manifolds all states are gapped [16].

Under these assumptions the zero Hamiltonian of the
Chern-Simons theory is replaced by the Bernoulli energy

H =

∫
mν

2
v̂†ρ̂v̂ d2r, (10)

where mν = πβ~
κ ∼ ~2`2B

∆ν
is an effective mass obtained

from the value of a gap, ρ̂(r) =
∑
i δ(r−ri) is the density,

and v̂ = v̂x − iv̂y is the velocity. Velocity of a particle is

i

2~
mν v̂i = ∂zi −

e

2c
A(zi)−

∑
j 6=i

β

zi − zj
, β =

1

ν
. (11)

Here A = Ax − iAy is an external e.m. potential , zi =
xi + iyi is the complex coordinate. We use β = 1/ν.

A subtle point of this Hamiltonian is the definition of
the velocity operator (11). It differs from the velocity
of individual electrons but corresponds to the velocity of
”composite particles” - electrons with an attached flux
converting them to bosons. This velocity changes slowly
in long-wave excited states. It enters hydrodynamics.

Another noticeable feature is a normal ordering of ve-
locities entered (11).It ensures that Hψ0 = 0.

The Hamiltonian (10) can be viewed as a quantized
version of ”effective” Hamiltonians proposed in [13].

4. Quantum hydrodynamics of the FQHE liquid de-
scribes dynamics of velocity and density fields when the
number of particles is large. The fields are defined as op-
erators acting on averages 〈O〉

V
. In particular, the veloc-

ity field is defined as ρ(r)v(r)〈O〉
V

=〈
∑
j δ(r−rj)vjO〉V ,

where ρ(r) = 〈ρ̂(r)〉
V

. In this representation

mνv = 2∂z(πρ − iV ), πρ = −i~
δ

δρ
. (12)

In the restricted space (8) matrix elements of πρ are imag-
inary, ∆V is real, hence the liquid is incompressible

~∇ · ~v = 0. (13)

It is customary describe the incompressible flow in terms
of the stream function

~v = ~∇×Ψ, mνΨ = iπρ + ReV. (14)

Eq. (14) gives an interpretation to the deformation po-
tential V . Its real part is the diagonal part of the stream
function. Diagonal parts of vorticity and energy are

〈H〉
V

=
1

2mν

∫
|∇V |2ρd2r, mν〈~∇× ~v〉V = −∆V (15)

5. Holomorphic fields, potential incompressible flow
and Edge states. In a system without boundaries all
modes are gapped [1, 14]. If there is a boundary, gap-
less edge states emerge. In this paper we focus only on
edge states, deferring discussion of hydrodynamics of the
bulk. For this purposes it is sufficient to consider only a
potential flow where a stream function is harmonic

~∇× ~v = 0, ∆Ψ = 0. (16)

Potential flow corresponds to deformations of the w.f. (8)
by analytic functions inside the domain occupied by the
liquid. All singularities of V are outside of the domain
(analytic functions do not exist on closed manifolds, so
as gapless modes). It has been shown in [15] that a holo-
morphic deformation of Laughlin’s state changes only the
shape of the droplet, leaving the density and the area un-
changed. In the leading 1/N order, the bulk density is
uniform ρ̄ = νB/Φ0. In a radial potential the droplet in

the ground state is a disk with a radius R =
√
N/πρ̄.

Incompressible potential flow with a free boundary
and a constant density is a standard subject in classi-
cal hydrodynamics [17]. Its extension to the quantum
case is straightforward. Use the Green formula and the
Cauchy-Riemann condition to express the Hamiltionian
only through the boundary value of the fluid potential

H =
mν ρ̄

2

∮
Ψ∂nΨds, 〈H〉

V
=

ρ̄

2imν

∮
V̄ dV. (17)

The bulk Hamiltonian vanishes. Then the only governing
equation is the kinematic boundary condition [17]

ẏ + vx∇xy + vy = 0, (18)

where vx, vy are velocities of the inner layer tangential
and normal to the unperturbed boundary. In the rest
of the paper we derive the relation between velocity and
boundary elevation. The result is

vx = c0 − κρ̄y(x), vy = κη · yHxx (19)

We obtain the qBO (3) by using (18) and f(x) = ρ̄y(x) .
6. Chiral constraint A relation between potential V ,

hence velocity, and the shape of the boundary has been
obtained in [15]. We re-derive it invoking Dyson’s argu-
ments [18] and refine the results of [15]. Dyson’s argu-
ments are somewhat heuristic but transparent and short.

Let us express an expectation value 〈O〉
V

as a path

integral over the density field 〈O〉
V

=
∫
O[ρ̂]e−βFV [ρ̂]Dρ̂.

The chiral constraint (aka loop equation [15]) is the saddle
point condition ensured by a large number of particles( δ

δρ
− β δ

δρ
F
V

[ρ]
)
O[ρ] = 0. (20)
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The functional F
V

[ρ] can be treated as the free energy
of 2D-Coulomb plasma. It consists of energy and en-
tropy. −βF

V
= log |ψV |2 −

∫
ρ log ρd2r. The entropy

is the Jacobian of passing from integration over particle
coordinates to a path integral over the density field.

In order to find the energy of the plasma we write∑
i,j 6=i log |ri−rj | =

∑
i,j log |ri−rj+`δij |−

∑
i log `(ri),

where `(r) is the mean distance between particles. Ex-
clusion of ”self-interaction” allows to replace sums by in-
tegrals:

∑
j 6=i log |ri − rj | = − 1

2ϕ(ri) − log `(ri), where

ϕ(r) = −2
∫

log |r − r′|ρd2r is the Coulomb potential of
the plasma. This gives

βF
V

=

∫
[
β

2
(ϕ− ϕ̄) +β log `+ log ρ− 2

~
ReV ]ρd2r, (21)

where ϕ̄ = −2
∫ R

0
log |r− r′|ρ̄d2r′ = πρ̄r2 is the potential

of a neutralizing uniform background charge ρ̄.
A subtle point of this approach is the value of the mean

distance between particles. It is different in the bulk and
close to the boundary. In the bulk the mean distance is
isotropic and ρ`2 ∼ 1. The short distance term and the
entropy in (21) sum up to (β2 − 1) log ρ.

Close to the boundary, ` entering (21) is the distance
in the direction normal to the boundary. Since the mean
distance along the boundary is constant ∼ `B we have
`B` ∼ 1/ρ. In this case the short distance term and the
entropy term sum up to (β−1) log ρ. Then Eq.(20) gives
2πκ−1Ψ = ϕ− ϕ̄− 2(1− ν) log ρ.

Unfortunately, Dyson’s arguments miss exponential
corrections important at the boundary. Notice that in
the case of the IQHE when β = 1 the term (β − 1) log ρ
vanishes. The Dyson’s arguments give 2πκ−1Ψ = ϕ− ϕ̄.
This equation treats the density as a step-function. In-
stead, the exact density of the IQHE is

ρI =
1

2
ρ̄ erfc(

y√
2`B

) ≈ ρ̄
(

Θ(−y) +
`B

y
√

2π
e
− y2

2`2
B . . .

)
,

where (−y) is the distance to the boundary.
This failure can be ”repaired” by replacing the plasma

Coulomb potential ϕ̄ = πρ̄r2 of a neutralizing uniform
charge ρ̄ in (21) by the potential of the charge ρI : ϕI =

−2
∫

log |r−r′|ρI(r′)d2r′ ≈ πρ̄r2(1+O(e−y
2/2`2B )). Then

2πκ−1Ψ = ϕ− ϕI − 2(1− ν) log ρ. (22)

This ad hoc procedure reflects a discreteness of particles.
So far we did not assume that the flow is potential. If

the flow is potential the Laplace operator nulls the l.h.s.
of (22). We obtain a Liouville-type equation

ρ− ρI + η∆ log ρ = 0. (23)

We wish to have a more satisfactory mathematical justifi-
cation of this equation. To support the Liouville equation
we comment that it can be can be checked against the
sum rule (9), and that its numerical solution obtained by
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FIG. 2: Boundary double layer of ν = 1
3

state computed for
200 particles [21]: Left (in decreasing order): overshoot of
the density ρ, density ρI (at ν = 1 ), the dipole moment
−η(r) =

∫ r
y′(ρI−ρ)dy′. The value of η|∞ = 1−ν

4π
≈ 0.053 is

clearly seen. Right: ρ− ρI illustrates the double layer (4).

A. Abanov appears to be undistinguishable from a nu-
merical ab initio simulation of the Laughlin’s wave func-
tion (8) presented in Fig. 2 [20, 21].

7. Boundary double layer and its dipole moment
Eq.(23) has a profound consequence. It shows that the
density behavior is singular: on approaching the bound-
ary the density oscillates and shoots up before falling
down. A detailed structure of the overshoot is not well
understood. However, we know that it is a double layer
and as we see in a moment, only the boundary dipole mo-
ment of the layer enters the edge dynamics. The dipole
moment is easy to compute. The overshoot was observed
numerically in [19] but have not been given any partic-
ular significance. Independently it has been found an-
alytically in [15]. The value of the dipole moment (5)
follows from the sum rule (9) and also from the Liouville
equation (23).

A detailed structure of the layer follows from (23). It-
erations of (23) allow us to conjecture the asymptotic
expansion for the density. In units of `B [20, 22]

ρ = ρ̄
(

1+
e−ξ

2/2

ν
√

2π
(2πη ξ+O(ξ−1)

)
, `Bξ = y < 0. (24)

At `B → 0 the leading term of (24) is a double layer
presented earlier (4).

8. Transformation of velocities Now we are in a po-
sition to compute the velocity in terms of the bound-
ary elevation to complete the governing equation (18).
As in (18) we assume the density moves together with
the boundary ρ(x, y) = ρ0(y−y(x)), where ρ0(y) is the
density of the ground state, and compute the boundary
value of the Coulomb potential of the plasma ϕ entering
the chiral constraint (22). Computing

∫
log |r−r′|ρ0(y′−

y(x′))dx′dy′, we shift the variable y′→y′+y(x′), subtract
ρI and expand in y(x). We obtain ϕ(x, y)−ϕ0(y−y(x))≈

2

∫
dx′(y(x′)−y(x))

∫
y − y′

|r − r′|2
[ρ0(y′)−ρI ]dy′−2πρ̄yy(x).

The integral over y′ is localized inside the boundary layer.
If we choose y to be on the inner boundary of the layer
the range of |y−y′| ∼ `B . We can replace |r−r′|−2 in the
integral by (x− x′)−2 obtaining a transformation law of
the stream function under a displacement of the bound-
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ary by y(x) (valid for any shape of the boundary)[23]

Ψ(x, y) = Ψ0(y − y(x))− κ
(
ρ̄y · y(x) + η · yHx

)
. (25)

For a flat boundary Ψ0 = c0y. This prompts (19) and
subsequently qBO.

The relation between V and y(x) follows from (25,14 )

(πβ~)−1V ′ =
ρ̄

4π

∫
y(x′)dx′

z − x′
+

η

2π

∫
y(x′)dx′

(z − x′)3
. (26)

The Benjamin-Ono equation (3) and the current algebra
(1) follow from the transformation law (25), and the value
of the dipole moment (5).
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