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The differences between spin relaxation in graphene and in other materials are discussed. For
relaxation by scattering processes, the Elliot-Yafet mechanism, the relation between the spin and
the momentum scattering times acquires a dependence on the carrier density, which is independent
of the scattering mechanism and the relation between mobility and carrier concentration. This
dependence puts severe restrictions on the origin of the spin relaxation in graphene. The density
dependence of the spin relaxation allows us to distinguish between ordinary impurities and defects
which modify locally the spin-orbit interaction.

PACS numbers:

Introduction. Graphene is considered as a potential
material for spintronics devices due to the weak spin-
orbit (SO) interaction1–3 and long spin lifetimes4. One
of the most intriguing features of spintronics in graphene
is that the observed spin relaxation time is significantly
shorter than the values estimated theoretically. A num-
ber of recent experiments5–7 investigate which spin re-
laxation mechanism plays the major role both in sin-
gle layer and in bilayer graphene. The D’yakonov-Perel8

and the Elliot-Yafet9,10 mechanisms are usually discussed
in the context of graphene11,12, whereas the effect of
hyperfine interactions is neglected due to the near ab-
sence of nuclear magnetic moments, as well as the Bir-
Aronov-Pikus mechanism, which is important for heavily
p-doped semiconductors13. Experiments suggest that the
main source of spin relaxation in single layer graphene
is extrinsic, lending support to the Elliot-Yafet mecha-
nism. Longer spin lifetimes have been reported in bilayer
graphene than in single layer5, when the SO coupling in
the bilayer is expected to be somewhat stronger14.
The Elliot-Yafet mechanism takes into account the

change in the spin polarization of a Bloch electron due to
scattering by impurities, lattice defects or phonons. The
Elliot relation establishes a linear relation between the
spin relaxation time and momentum scattering time:

τs =
τp
α

(1)

where α can be interpreted as the spin-flip probability
during a momentum relaxation event. Elliot deduced this
relation by using a perturbative approach. Due to the SO
coupling, Bloch states with well-defined spin polarization
are not longer eigenstates of the complete Hamiltonian.
In the case of conventional metals with a center of sym-
metry, two degenerate states can be defined for each value
of the momentum9:

[ak (r) | ↑〉+ bk (r) | ↓〉] eik·r (2)
[

(a−k (r))
∗ | ↓〉 − (b−k (r))

∗ | ↑〉
]

eik·r (3)

where the coefficients a, b are lattice-periodic due to the
discrete translation symmetry. These two states are con-

nected by spatial inversion and time reversal symme-
tries and form a Kramers’ doublet. These states can
be identified with spin-up and spin-down states because
typically |b| ≪ 1. Since the SO interaction couples
electronic states with opposite spin projections in dif-
ferent bands (in the case of graphene the SO interac-
tion couples π and σ bands), perturbation theory gives
|b| ≈ ∆SO/∆E, where ∆E is the energy difference be-
tween the two bands involved. Usually, ∆SO ≪ ∆E, as
in the case of graphene.

The spin flip amplitude during the scattering by an
obstacle with no spin degrees of freedom itself can be
computed using the Born approximation, leading to α ≈
〈

|b|2
〉

where the symbol 〈〉 expresses an average over the
Fermi surface. These arguments are quite general and
do not depend on the nature of the scatterers. Realistic
calculations can be done in some cases, for instance in
the case of III-V semiconductors15,16.

The relation (1) holds experimentally for most conven-
tional metals17. As we discuss below, doped graphene is
not an exception. However, unlike ordinary semiconduc-
tors, the nature of the effective SO coupling acting on
the graphene π electrons, which are the relevant ones in
what concerns to transport properties, and importantly,
the vanishing gap between conduction and valence elec-
trons, makes the ratio τs/τp to depend strongly on the
number of carriers through the Fermi energy. This re-
sult holds for different kind of defects, as it discussed
next. A wide variety of experiments18 suggest a linear
scaling between τp and τs, with independence of the car-
rier concentration. Our analysis shows that this behavior
cannot attributed to the Elliot-Yafet mechanism, open-
ing the door to other extrinsically induced spin relaxation
mechanisms, such as a defects which modify locally the
spin-orbit interaction19,20.

The model. In graphene, the intrinsic SO coupling can
be neglected in comparison to the Rashba-like coupling,
generated by perturbations which break spatial inversion,
such as electric fields and ripples. If the perturbation
changes slowly over scales larger than the lattice spac-
ing, we can neglect intervalley hybridization21. Then,



2

the Hamiltonian of the problem reads:

H = −i~vF~σ · ∇+
∆

2
(~σ × ~s)z (4)

The Rashba-like term breaks the spatial inversion sym-
metry, and two degenerate eigenstates cannot be defined
for a given momentum k. A decomposition as the one
in Eqs. (2)-(3) cannot be done, and the above Elliot’s
approach is not applicable. Moreover, the Rashba-like
term (note that it is proportional to vk × s, where vk is
the velocity operator around each valley) entangles spin
and sublattice degrees of freedom, complicating the def-
inition of the amount of spin relaxation in a scattering
event. The Bloch eigenstates of (4) read:

Ψk,± =

[(

1
ǫk±

~vF |k|e
iθk

)

⊗ | ↑〉±

±i

( ǫk±

~vF |k|e
iθk

e2iθk

)

⊗ | ↓〉
]

eik·r (5)

where θk = arctan (ky/kx) and ǫek,± = ±∆
2

+
√

(~vF |k|)2 +
(

∆
2

)2
, where e denotes electrons. A simi-

lar expression can be defined for holes by changing the
sign of the second term. In what follows, we restrict the
discussion to electrons. As we see, a spin direction can-
not be uniquely defined for all momenta. When we take
∆ = 0, eigenstates (5) are Bloch states with well-defined
projection of spin over the direction of motion, that is,
helicity ±. This is not strictly true when ∆ 6= 0, but in
the spirit of the Elliot’s approach, we can identify each
of these eigenstates with chiral states ±. This is justi-
fied from the point of view of perturbation theory, since
for carrier concentrations of interest we have ∆/ǫF ≪ 1.
Thus, the effect of the Rashba-like coupling can be in-
terpreted as the energy splitting (∼ ∆) of bands with
opposite chirality.
Let’s consider now scattering by a potential U (r) di-

agonal in sublattice and spin degrees of freedom in the
Born approximation. We study scattering in the chiral
channels discussed above instead of the spin-up and spin-
down channels as in the case of the Elliot’s approach.
This restriction complicates the definition of the amount
of spin relaxation. To illustrate this, it is useful to cal-
culate the scattering amplitudes in these channels in the
absence of SO. Assuming and incoming Bloch state with
energy ǫ = ~vFk and positive chirality, it is easy to see
that in that case (see Supplementary Information):

f+ (θ) = − (~vF )
−1

√

k

8π
Uqe

−iθ (1 + cos θ)

f− (θ) = − (~vF )
−1

√

k

8π
Uqie

−iθ sin θ (6)

where Uq is the Fourier transformation of the scatter-
ing potential evaluated at the transferred momentum
k
′ − k, and θ is the angle between the outcoming k

′

and incoming k momentum (see Fig. 1). If we repeat

σ

σ’
σ’’

φ

x

y
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σ
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FIG. 1: a) Sketch of scattering by a potential U (r) in the
chiral channels defined in the text. b) Sketch of scattering by
a boundary.

the calculation in the spin-up and spin-down channels
assuming an incoming state with spin up, then we ob-

tain f↑ = − (~vF )
−1

√

k
8πUq

(

1 + e−iθ
)

and f↓ = 0, since

in the absence of SO there is no spin-flip. The scat-
tering amplitude f− is not zero in general (except for
forward scattering) so that it cannot be related with a
cross-section for a spin-flip process.
In order to study scattering in the chiral channels de-

fined by the Rashba coupling we define the probability
for a spin-flip process from the changes in the scattering
in both chiral channels due to the presence of the SO
coupling. We define the quantity:

S (θ) =

∑

±1

∣

∣f0
± (θ)

∣

∣ ·
∣

∣f∆
± (θ)− f0

± (θ)
∣

∣

∑

±1

∣

∣f0
± (θ)

∣

∣

2
(7)

where the superscript ∆ (0) indicates the presence (ab-
sence) of the Rashba-like coupling. This quantity van-
ishes when ∆ = 0, and it can be interpreted as a mea-
sure of the amount of spin relaxed in the direction defined
by θ. As in the case of the Elliot’s approach, the total
amount of spin relaxation during a scattering event can
be defined as the average of this quantity over the Fermi
surface:

S = 〈S (θ)〉 = 1

2π

∫

dθS (θ, ǫ = ǫF ) (8)

In Ref. 11 the relation S ∼ ∆/ǫF was deduced in the
case of weak scatterers. Here we show that this rela-
tion is general, and it does not depend on the nature of
the scatterer, including strong scatterers or other impu-
rity potentials which cannot be treated in the Born ap-
proximation, where the value of S cannot obtained from
perturbation theory. The Born approximation suffices,
however, to show how this behavior is implied by the na-
ture of the SO coupling in graphene with independence
of the precise scattering mechanism. It is not difficult
to compute exactly f∆

± (θ) (see Supplementary Informa-
tion), but the picture provided by perturbation theory is
enough to illustrate this behavior in the doped regime.
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For an arbitrary scatterer, the value amplitude f0
±(θ),

as defined in (6), requires the use of non perturbative
methods. The difference f∆

± (θ)− f0
±(θ), however, can be

obtained by expanding in powers of ∆/ǫF . This is easy
to see in the Born approximation, where the substitution
ǫ → ǫ±∆/2 in expressions (6) has to be made in order to
obtain f∆

± (θ). An expansion in powers of ∆/ǫ is well de-
fined, and it implies that S (θ) ∼ ∆/ǫ, independently of
the scattering potential, Uq, which factorizes in expres-
sions (6). Assuming this behavior, the Elliot relation for
graphene can be easily found. After Ncol collisions, the
change of spin polarization is of the order of

√
NcolS.

Dephasing takes place after a time τs = Ncolτp, when√
NcolS ∼ 1. Hence we obtain the relation:

τs ≈
ǫ2F
∆2

τp (9)

This is the Elliot relation for graphene. As one can
see, the ratio τs/τp depends on the carrier concentration
through the Fermi energy. In what follows we compute
exactly the amount of spin relaxation S for different kind
of scatterers, generalizing the relation (9).
Results for different scatterers. The scattering ampli-

tudes (6) can be calculated exactly in the presence of the
Rashba-like coupling (see Supplementary Information).
In the case of weak scatterers, we consider as scattering
center a isotropic potential U (r) = V ϑ (r −R), where
ϑ (r −R) is a step function. In the case of Coulomb scat-
terers the scattering potential reads U (r) = −~vFα/r.
Note that |α| < 1/2, in other case the solutions of the
Coulomb problem oscillate very fast and have no well-
defined limit as r → 0, which corresponds to the Dirac
vacuum breakdown (the continuum description in terms
of the Dirac Hamiltonian is not valid)22. The results are
shown in Fig. 2. In both cases S ∼ ∆/ǫF .

In order to study spin relaxation during scattering by
a boundary we have to adapt the definition of S. We
are going to consider a zig-zag termination for simplicity,
since it defines the most general boundary conditions23.
We consider as incoming wave a Bloch state Ψk,+ with
energy ǫ, forming an angle φ with the direction perpen-
dicular to the boundary. As it is deduced from Fig. 1,
π/2 + σ = φ, where σ = arctan (ky/kx). Two outgo-
ing Bloch states exist satisfying conservation of energy
and momentum in the direction parallel to the boundary.
Then, the outgoing wave can be written as the superposi-
tion Ψout = r1Ψk+,++r2Ψk−,−, where k+ (k−) forms an
angle σ′ (σ′′) with the direction defined by the boundary

(see Fig. 1), and |k±| ≡ k± = (~vF )
−1

√
ǫ2 ∓ ǫ∆. We can

define the amount of spin relaxed in the direction defined
by φ as:

S (φ) =

∣

∣r01
∣

∣ ·
∣

∣r1 − r01
∣

∣+
∣

∣r02
∣

∣ ·
∣

∣r2 − r02
∣

∣

|r01 |
2
+ |r02 |

2
(10)
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FIG. 2: S as a function of the carrier concentration for ∆ = 1
meV (in blue) and ∆ = 0.5 meV (in red). a) Weak scatterers
(R = 1 Å and V0 = 0.1 eV). b) Coulomb scatterers. These
results are obtained by computing exactly the scattering am-
plitudes f∆

± and evaluating numerically Eq. (8). Insets: S for

∆ = 0.1 meV and kF = (~vF )
−1

ǫF = 0.01 Å plotted as func-
tions of k−1

F
and ∆ respectively. A clear linear dependence is

showed, as it is argued in the text.

where the superscript 0 refers to the reflection coefficients
in the absence of the SO coupling. As before, the amount
of spin relaxed by the boundary can be defined as the av-

erage, S = 〈S (φ)〉 = 1
π

∫ π/2

−π/2
dφS (φ, ǫ = ǫF ). By impos-

ing zig-zag boundary conditions we obtain the following
expressions for the reflection coefficients:

r1 = − k−e
iσ + k+e

iσ′′

k−eiσ
′ + k+eiσ

′′ (11)

r2 =
k−

(

eiσ − eiσ
′
)

k−eiσ
′ + k+eiσ

′′ (12)

Besides this, from conservation constrains we have σ′ =

−σ and cosσ′′ = k+

k−
cosσ. To first order in the SO cou-

pling, σ′′ = −σ − ∆
ǫ cotσ + O

(

∆2/ǫ2
)

. Then, to first
order in the SO coupling, the reflection coefficients in
terms of the angle φ read:

r1 = ieiφ sinφ+
∆

2ǫ
+O

(

∆2

ǫ2

)

(13)

r2 = −eiφ cosφ− ∆

2ǫ
+O

(

∆2

ǫ2

)

(14)

The amount of spin relaxation can be estimated as S =
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FIG. 3: S as a function of the carrier concentration for ∆ = 1
meV (in blue) and ∆ = 0.5 meV (in red). The dots correspond
to the numerical evaluation of S, the continuum line to the
analytical estimates of the text. a) Scattering by boundaries.
b) Strong scatterers (R = 1.4 Å).

2∆
πǫF

. This expression fits the exact result rather well, see
Fig. 3.

In the case of strong scatterers, such as vacancies, the
Born approximation fails. As in the case of boundaries,
we need to extend the definition of S. Strong scatterers
can be described as a circular void of radius of the order
of the lattice constant. We can exploit the cylindrical
symmetry of the problem by using the decomposition of
the eigenstates of (4) into partial waves with well-defined
generalized total angular momentum J = lz+σz/2+sz/2,
which is actually a global symmetry of the problem,
where lz is the third component of the orbital angular
momentum operator lz = −i (x∂y − y∂x). For each in-
coming cylindrical wave with energy ǫ, there are two re-
flected waves with the same energy. A quantity analo-
gous to Eq. (10) can be defined, considering scattering
in all channels with well-defined J (see Supplementary
Information). The amplitude for spin scattering can be
calculated analytically S ≈ π∆

2ǫF
which fits very well the

numerical evaluation of S, see Fig. 3.

The case of clusters of impurities24 is studied within
this formalism as well, since the Born approximation fails
when the range of the scattering potential R is too large
in such a way that the associated energy scale ~vFR

−1

exceeds its strength, V R ≪ ~vF . The same behavior
S ∼ ∆/ǫF is deduced (see Supplementary Information).

Discussion and conclusions. As we have seen, the av-
eraged amount of spin relaxed during a scattering event
behaves as S ∼ ∆/ǫF , independently of the nature of the
scatterer, implying the general relation τs ≈ ǫ2F τp/∆

2.
This unusual dependence on the carrier concentration ul-
timately arises from the absence of a energy gap between
the conduction and valence π bands, and can be expected
also in narrow gap semiconductors in the doped regime,
where the Fermi energy is larger than the gap. In met-
als, spin relaxation is governed by intra-band transitions
induced by the SO coupling at the Fermi energy, whereas
in ordinary semiconductors it is dominated by inter-band
transitions through the gap. In graphene we have a more
complicated combination of both. This is clear when the
Elliot-Yafet mechanism induced by the intrinsic SO cou-
pling of graphene is studied, where the standard Elliot’s
approach is applicable (see Supplementary Information).

The energy difference between the states at conduction
and valence bands involved in the calculation is precisely
2ǫF , giving α ∝ ∆2/ǫ2F . This result is not consistent with
a linear scaling between the spin relaxation time and the
diffusion coefficient at different gate voltages as it is ob-
served in most of the experiments, suggesting that other
mechanisms dominate spin scattering. It is interesting
to consider in detail the experimental data of Ref. 18.
The results show a sub-linear dependence of the diffu-
sion constant on carrier density (proportional to the mo-
mentum scattering time) and also of the spin relaxation
time. This is clearly inconsistent with our result if one
assumes the Elliot-Yafet induced by defects in graphene
as the main spin relaxation mechanism.
However, our theory explains recent experiments in

CVD (Chemical Vapor Deposition) graphene-based spin
valves7. In these experiments, the momentum scatter-
ing time shows a sub-linear dependence on carrier den-
sity, whereas the spin relaxation time shows a super-
lineal behavior, in agreement with our theoretical find-
ings. This result implies that characteristic defects of
CVD graphene samples, such as grain boundaries, are
the main source of spin relaxation. In exfoliated samples,
however, although there is a clear correlation between
momentum scattering and spin relaxation, the deviation
from our formula implies another mechanism (not strictly
Elliot-Yafet) operating, essentially based on the scatter-
ing by defects which interact with the electron spins.
There are several candidates which could explain the

experimental results in exfoliated graphene. The most
relevant ones are: i) spin-flip induced by impurities co-
valently attached to graphene carbon atoms19, ii) the ef-
fect of a fluctuating Rashba field created by ripples25, iii)
scattering by local spins. In the first two cases the spin-
flip process is induced in regions where the SO coupling is
locally enhanced, by heavy adatoms deposition20, sp3 hy-
bridization due to resonant impurities19, or ripples25. Im-
portantly, a local enhancement of the SO coupling opens
a new channel for spin relaxation apart from the one in-
duced by momentum scattering (see Supplementary In-
formation), as it is evident in recent works based on a
kinetic spin Bloch equation approach26,27. Also in-plane
strains could play a role, as it is pointed out in Ref. 11.
This issue must be looked in more detail. In what con-
cerns to the latter mechanism, the formation of local
spins near defects as vacancies or resonant impurities is
compatible with recent experimental28 and theoretical29

findings. This mechanism can be distinguished by the
dependence of the spin lifetime on the injected current.
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