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Engineered bacteria in which motility is reduced by local cell density generate periodic stripes of
high and low density when spotted on agar plates. We study theoretically the origin and mechanism
of this process in a kinetic model that includes growth and density-suppressed motility of the cells.
The spreading of a region of immotile cells into an initially cell-free region is analyzed. From the
calculated front profile we provide an analytic ansatz to determine the phase boundary between
the stripe and the no-stripe phases. The influence of various parameters on the phase boundary is
discussed.
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Biological systems exhibit a wide variety of exquisite
spatial and temporal patterns. These patterns often
play vital roles in embryogenesis and development [1, 2].
In addition, colonies of bacteria and simple eukaryotes
also generate complex shapes and patterns [3–8]. Typi-
cally, these patterns are the outcome of coordinated cell
growth, movement, and differentiation that involve the
detection and processing of extracellular cues [3].

These experimental observations have triggered exten-
sive mathematical modeling. A large body of theoretical
work is devoted to pattern formation by chemotactic bac-
teria. On the mean-field level, these phenomena can be
described by Keller-Segel type reaction-diffusion models
[9–11]. In many instances, the models invoke non-linear
diffusion of the cells where the diffusion coefficient in-
creases with the local cell density [3, 12].

Recently, it was theoretically proposed that the oppo-
site case of density suppressing motility could also lead
to patterns via a “self-trapping” mechanism [13, 14]. In
parallel, we have explored such a system experimentally,
using a synthetic biology approach [15]. The density-
suppressed motility was introduced into the bacterium
E. coli by having it excrete a small (and rapidly de-
graded) signaling molecule AHL, such that at low AHL
levels, these cells perform random walks via their swim-
and-tumble motion [16] and are “motile”, while at high
AHL levels, these cells tumble incessantly, resulting in a
vanishing macroscopic motility and becoming “immotile”
[Fig. 1(a)].

On agar plates, these engineered bacteria form highly
regular and stable stripe patterns consisting of periodi-
cally alternating regions of high and low cellular densities
[Fig. 1(b)]. A thorough characterization of these spatial
patterns gave rise to the following key experimental ob-
servations [15]: (i) Regulation of cell motility by AHL
is essential for pattern formation; (ii) Cells are motile at
low densities and immotile at high densities; (iii) Bacteria

form stripes sequentially in one- and two-dimensional ge-
ometries when expanding into an initially cell-free region;
(iv) Random initial conditions do not give rise to stripes;
(v) Chemotaxis is not required for pattern formation; (vi)
The stripe patterns depend on the magnitude of the un-
repressed cellular motility in the low density limit: Upon
decreasing this magnitude the system makes a transition
from a phase with spatially periodic stripes (the stripe
phase) to the no-stripe phase, through a region with a
finite number of stripes.

As demonstrated in [15], all the experimental obser-
vations can be reproduced by a three-component model
that (i) describes the cellular motion as random walk
with an abrupt AHL-dependent motility coefficient, (ii)
takes into account the synthesis, diffusion, and turnover
of AHL, and (iii) implements the consumption and diffu-
sion of the nutrient due to cell growth and the limitation
of growth in the absence of nutrient.

Despite the success of this model, the origin and mech-
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FIG. 1: (a) The engineered bacterium cells execute “random
walks” at low densities but become immotile at high densi-
ties. (b) This coupling between density and motility leads to
the formation of stripes with periodic density variations on
agar plates [15]. Initial cell seeding was done (at the position
indicated by the arrow) 30hr before the picture was taken.
Bar corresponds to a length of 5mm.



2

anism of the pattern formation process remain unclear.
In this paper, we describe a simplified two-component
model to study the essential features of stripe formation
analytically. In terms of the concentration h(x, t) of AHL
and the cell density ρ(x, t) at position x and time t, the
dynamical equations are given by,

∂h

∂t
= Dh

∂2h

∂x2
+ αρ− βh, (1)

∂ρ

∂t
=

∂2

∂x2
[µ(h)ρ] + γρ

(

1−
ρ

ρs

)

. (2)

The first equation describes production (with rate α), dif-
fusion (with diffusion coefficient Dh) and turnover (with
rate β) of AHL. It is clear that in spatially homogeneous
situations, h ∝ ρ in the steady state, hence the name
“quorum sensor” for AHL. The second term on the right
hand side of Eq. (2) describes logistic bacterial growth at
rate γ and with a saturation density ρs. The reduced
growth rate at high densities approximates the nutri-
ent depletion effect in the experiments. The stochastic
swim-and-tumble motion of the bacteria is modeled as a
diffusion-like term on the right hand side of Eq. (2). The
experimentally measured values of all parameters can be
found in Ref. [15].
The motility function µ(h) explicitly depends on h. It

takes into account the repressive effect of AHL concen-
tration (and hence cell density) on cell motility. The
interaction term in Eq. (2) can be obtained by either
generalizing the coarse-graining procedure of Ref. [13] or
adopting the master equation approach of Ref. [17] to an
h-dependent motility. In fact, such an analysis yields a
mixture of two terms ∂x(µ(h)∂xρ) and ∂x(ρ∂xµ(h)) (for
details see SM). For simplicity we focus on the above cou-
pling, but our main conclusions are not affected by this
(for details see SM).
Measurements of bacterial diffusion at the population

level show that µ drops abruptly from a value Dρ to
Dρ,0 ≪ Dρ as h increases beyond a threshold h0. As
simulation results of Ref. [15] did not depend sensitively
on the value Dρ,0, we shall set Dρ,0 = 0. Thus, we con-
sider the form µ(h) = Dρ for h ≤ h0 − w and µ(h) = 0
for h > h0 with a linear decrease of µ for the transition
region h0 − w < h < h0 with h0 ≫ w → 0.
As demonstrated in Ref. [15], this two-component

model is able to initiate stripe patterns in a growing
bacteria colony and maintain them for a while; but the
stripes are eventually lost after long times when cell den-
sities reach ρs throughout the system. The latter behav-
ior deviates from the experimental system where stripes
are frozen in upon nutrient exhaustion. Nevertheless, the
model correctly captures the dynamics at the propagat-
ing front where new stripes are formed. The simplic-
ity gained enables analytic treatment that clarifies con-
ditions for spontaneous stripe formation in the system.
Consider a one-dimensional bacterial colony develop-

ment as depicted in Fig. 1(b). Initially, cell density is

low on the plate and all cells grow and freely diffuse.
As growth proceeds cells at the center aggregate. The
increased cell population boosts the local AHL concen-
tration, driving it eventually above h0 so that cells inside
the aggregate become immotile. At the same time, this
high density region expands outward by absorbing cells
moving from surrounding low-density regions into the ag-
gregate. Depending on the parameter values of the sys-
tem, the high density region expands either stably as a
front or exhibits instability that results in stripes [15].
We now take a closer look at the low-density region

that precedes the advancing aggregate, whose cell den-
sity profile is calculated later (see Fig. 2). The size of
this motile cell population is maintained by a dynamic
balance between cell growth within and loss to the ag-
gregate in the contact zone. Due to absorption by the
aggregate, cell number is low in the contact region. By
virtue of Eq. (2), the maximum density ρm of motile cells
is found at a distance Lρ =

√

Dρ/γ from the aggregate,
while the cell diffusion flux into the aggregate is given
by J ≃ Dρρm/Lρ. Meanwhile, the expansion speed c of
the aggregate satisfies J = cρc where ρc is the density
drop across the aggregate boundary. Hence quite gener-
ally ρm ≃ ρc, i.e., the cell density profile in the motile
region scales with the density at the edge of the aggre-
gate where the AHL concentration is at the threshold
value h0. A quantitative calculation is then required to
determine whether the AHL concentration rises to the
threshold again at ρm. As we shall see below, the answer
depends on how the diffusion length Lh =

√

Dh/β of
AHL molecules (i.e., the typical distance travelled by an
AHL molecule before degradation) compares to Lρ.
We will analyze a rescaled version of the model (1)-

(2) that only depends on dimensionless quantities. We
measure length in units of Lρ, time in units of 1/γ, ρ in
units of βh0/α and h in units of h0. All dimensionless
quantities are denoted by a hat (e.g. t̂ ≡ tγ etc.). For a
steadily propagating front at speed ĉ, the density profiles
ρ̂ and ĥ become functions of ẑ = x̂− ĉt̂. We set the front
position at ẑ = 0 such that cells are immotile for ẑ < 0
(region I) and motile for ẑ > 0 (region II).
The cell density profile in region I is easily obtained

by integrating Eq. (2) with the boundary condition
ρ̂I(−∞) = ρ̂s ≡ αρs/(βh0),

ρ̂I(ẑ) =
ρ̂sρ̂c

ρ̂c + (ρ̂s − ρ̂c)eẑ/ĉ
, (3)

where ρ̂c ≡ ρ̂I(0
−) is the scaled cell density at the edge

of the aggregate. The experimental system of Ref. [15]
has a ρ̂s ≃ 4.
In region II, the marginal stability criterion [18] yields

ρ̂II(ẑ) ∼ e−ẑ for ẑ ≫ 1 with the selected wave speed
ĉ = 2. With this choice, Eq. (2) takes on the following
form (except within a distance w from the interface),

ρ̂′′II + 2ρ̂′II + ρ̂II (1− ρ̂II/ρ̂s) = 0, (4)
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where the prime denotes d/dẑ. For the form of µ(h)
described, one finds ρ̂II(0

+) = 0 as w → 0 (see SM).
Matching the diffusional flux from the motile side with
the speed of the immotile front yields the second condi-
tion at the interface: ρ̂′II(ẑ = 0+) = 2ρ̂c. Thus, ρ̂II(ẑ) is
a non-monotonic function, rising for small ẑ before de-
caying exponentially for large ẑ.
The AHL profile is determined from the cell density

profile as

ĥ(ẑ) = β̂

∫ ∞

−∞

dẑ1ρ̂(ẑ1)Gh(ẑ − ẑ1), (5)

with the Green’s function,

Gh(ẑ) = −(1 + D̂hλ)e
−ẑ/D̂he(1+D̂hλ)|ẑ|/D̂h/2, (6)

and λ ≡ −[1 + (1 + D̂hβ̂)
1/2]/D̂h.

Due to the nonlinearity in Eq. (4), an exact solution for
ρ̂II is not possible and we shall analyze the problem in an
expansion in ε ≡ ρ̂c/ρ̂s = ρc/ρs. We shall first consider
the limit ε → 0. The solution (3) is then approximated
by ρ̂I(ẑ) ≃ ρ̂linI (ẑ) = ρ̂ce

−ẑ/2. The linear form of Eq. (4)
together with the matching conditions at ẑ = 0 yields
ρ̂linII (z) = 2ρ̂cẑe

−ẑ. Inserting ρ̂lin(ẑ) into (5), we obtain
the AHL profile to the zeroth order in ε,

ĥlinII (ẑ) = β̂ρ̂c

(4− 4D̂h

v2
e−ẑ +

2

v
ẑe−ẑ +

λ2

w
eλẑ

)

, (7)

with v ≡ 2− D̂h + β̂ and w ≡ (1+λ)2(1+2λ)(1+ D̂hλ).
The value of ρ̂c is determined by the definition of the
front at ẑ = 0, i.e. ĥlinII (0) = 1.
Higher order corrections to the analytical profiles

given above can be computed systematically by rewriting
Eq. (4) in the form,

ρ̂II(ẑ) = ρ̂linII (ẑ) +
1

ρ̂s

∫ ∞

0

dẑ1ρ̂
2
II(ẑ1)G

lin
ρ (ẑ − ẑ1), (8)

where Glin
ρ (ẑ) = ẑe−ẑθ(ẑ) (with θ(x) denoting the Heav-

iside function) is the Green’s function for the linear part
of Eq. (4). Iteration of Eq. (8) yields ρ̂II(ẑ) as a power se-
ries in ε. The result, together with ρ̂I(ẑ) given by Eq. (3),

can then be fed into Eq. (5) to give ĥ(ẑ).
We have carried out the above procedure to the first

order in ε. Figure 2 shows typical ĥ- and ρ̂-profiles as
obtained from our zeroth order (thin solid lines) and first
order (dashed lines) analytical solution for ρ̂s = 4. As
anticipated earlier, the ρ̂-profiles (black) for the motile
population have the shape of a bulge with a depletion
zone right ahead of the front at ẑ = 0. In the zeroth
order approximation, the bulge is located at ẑ = 1 with
a peak value ρ̂linm = 2ρ̂c/e ≃ 0.736ρ̂c. For the values of

D̂h and β̂ shown, the AHL profiles (red) also develop a
dip in the contact zone. Nonetheless, the traveling wave
solutions are self-consistent as ĥ never cross the threshold
(dotted horizontal line) on the motile side.
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FIG. 2: (Color online.) Profiles of scaled cell density ρ̂(ẑ)

(black) and AHL concentration ĥ(ẑ) (red) around the edge
of the advancing aggregate at ẑ = 0. Shown here are the
analytical solution to the zeroth order (thin solid lines) and
first order (dashed lines) in ε = ρ̂c/ρ̂s, and the numerically
exact solution to the steady traveling-wave equations (thick

solid lines). Here D̂h = Dh/Dρ = 1, β̂ = β/γ = 4, and
ρ̂s = αρs/βh0 = 4.

To test our analytical solution we have calculated the
steady traveling profiles by integrating Eqs. (1)-(2) nu-
merically in the moving frame for the above boundary
conditions (thick solid lines). As is evident from Fig. 2,
the zeroth order solution already captures the key fea-
tures of the solution while the first order solution shows
quantitatively excellent agreement even at ρ̂s = 4.

Given this good agreement, we can now use the analyt-
ical expressions to find the stability limit of the traveling
wave solution, i.e., parameter values for which the peak
height ĥm of ĥII(ẑ) reaches the threshold value ĥ0 = 1.
Let us first consider D̂h = Dh/Dρ ≃ 1 as in the ex-
periments. The Green’s function (6) decays at a rate
of order one in scaled units when the scaled AHL diffu-

sion length L̂h =

√

D̂h/β̂ ∼ 1 = L̂ρ, but much faster

when L̂h ≪ 1. In the latter case, the AHL profile follows
closely the cell density profile, reaching its peak value at
the tip of the bulge. A straightforward exercise based on
Eq. (7) of the linear case shows ĥm = ρ̂m = 2ρ̂c/e while

ĥ(0) = ρ̂c/2 = 1. Hence ĥm = 4/e ≃ 1.47 > ĥ0. In this
case the traveling wave solution is not self-consistent. An
increase of L̂h allows immotile cells to contribute more to
the AHL level in the motile region. Consequently ĥII(ẑ)
flattens while ρ̂c decreases at the same time. Eventually
ĥm drops to a value below K̂h to restore self-consistency
of the traveling wave solution.

The actual stability limit can be obtained by numer-
ically solving the equations ĥII(ẑm) ≡ ĥm = 1 and
∂ẑhII(ẑm) = 0, where ẑm is the peak position of the
AHL profile. Using the respective analytical profiles,
we obtain the zeroth order β̂ = φlin(D̂h) (thin solid

line) and first order β̂ = φ(1)(D̂h) (dashed line) phase
boundaries as shown in Fig. 3. In the latter case, the
first order AHL profile allows us to compute the shift
δβ̂ = −εψ(D̂h)φ

lin(D̂h) in β̂ that satisfies these equations
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FIG. 3: Phase diagram for stripe formation. The thin solid
and dashed curves are, respectively, the phase boundaries as
calculated from our analytical solution in zeroth and first or-
der in ε = ρc/ρs. The thick solid line is obtained from the
numerical solution of Eqs. (1)-(2) in the moving frame. The
red line represents the boundary determined from the onset of
stripe patterns based on simulation of the full kinetic model
(1)-(2). Inset: thin and thick solid lines give Lh/Lρ on the
zeroth order and exact phase boundaries, respectively. The
dotted line shows the function ψ(Dh/Dρ) from the first order
correction in ε to the boundary position.

to order ε at a given D̂h. The modified boundary is then
obtained from φ(1)(D̂h) = φlin(D̂h) exp[−εψ(D̂h)]. The
function ψ(D̂h) is given by the dotted line in the inset
of Fig. 3. As a comparison, we have also computed the
phase boundary β̂ = φ(D̂h) where ĥm = 1 using the nu-
merically exact traveling wave solution (thick solid line
in Fig. 3). The agreement with the first order phase
boundary φ(1)(D̂h) is very good.

As a confirmation that our ansatz indeed captures the
dynamic instability behind the stripe formation process,
we also show in Fig. 3 (red dots) the actual onset of
stripes observed from a numerical simulation of Eqs. (1)-
(2). Due to the time it takes for transient stripes to
dissipate close to the transition with the setup of Fig.
1(b), the simulation tends to underestimate the no-stripe
region. Thus the true phase boundary in the long-time
limit is expected to be somewhat above the red line.

This study has led to the following picture of the stripe
formation process: the growth and lateral expansion of
the colony into an initially cell free region is described
by a traveling wave solution. In the steadily propagating
case, the density-coupled cell motility control breaks the
colony into an immotile region behind a moving bound-
ary and a density bulge of motile cells ahead of it. Max-
imum cell density in the motile region is reached at a
distance Lρ =

√

Dρ/γ from the boundary. In the exper-
iments of Ref. [15], the density coupling is implemented
via a small molecule AHL which provides information on

cell density within a distance Lh =
√

Dh/β. We have
shown that the steadily propagating wave is stable when
Lh is greater than or comparable to Lρ. In the oppo-
site case Lh ≪ Lρ, instability develops as the maximum
AHL concentration in the motile region would exceed the
threshold h0 for motility suppression. Instead, the colony
expands with periodic nucleation of new immotile regions
within the motile bulge ahead of the previously formed
high-density strip. Cell density behind the moving front
continue to grow until nutrient exhaustion, where the
density modulation becomes frozen. From the inset of
Fig. 3 we see that the ratio Lh/Lρ generally lies around
0.5 on the phase boundary between the two regimes.

In our system the propagating front thus drives sequen-
tial stripe formation in an open geometry. This is very
different from the classical Swift-Hohenberg [19] mecha-
nism where finite-wavelength symmetry breaking insta-
bility develops in the bulk. The highly nonlinear and
localized process in the nucleation of new stripes also
makes our mechanism different from that of pattern for-
mation driven by fronts propagating into a bistable sys-
tem where modulations arise during the linear instability
development at the front [20]. In this respect, there are
some similarities between our system and the nonperi-
odic Liesegang patterns since in both cases new “phase”
precipitates when certain critical density is reached [21].
On the other hand, in the chemical systems that exhibit
Liesegang patterns, reactant density increases via trans-
port instead of growth.
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