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We report a finding of pressure-induced quantum critical transition in K0.8FexSe2 

(x=1.7 and 1.78) superconductors through in-situ high-pressure electrical transport and 

X-ray diffraction measurements in diamond anvil cells.  Transitions from metallic 

Fermi liquid behavior to non-Fermi liquid behavior and from antiferromagnetism to 

paramagnetism are found in the pressure range of 9.2-10.3 GPa, in which 

superconductivity tends to disappear. The change around the quantum critical point from 

the coexisted antiferromagnetism state and the Fermi liquid behavior to the 

paramagnetism state and the non-Fermi liquid behavior in the iron selenide 

superconductors demonstrates a unique mechanism for their quantum critical transition.  

 

PACS numbers: 74.70.Xa, 74.25.Dw, 74.62.Fj  
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The recent discovery of superconductivity in K0.8Fe2Se2 selenide [1] with a transition 

temperature (Tc) above 30 K has generated considerable interest because its isostructure 

KFe2As2 pnictide only has a Tc of about 3 K and the selenide is more environmentally 

friendly than the pnictide. Later, superconductivity in other AxFe2−ySe2 (A =Rb, Cs, or Tl 

substituted K, Rb) compounds has been also found [2–4]. The carriers in these 

superconductors were identified to be electrons from the measurements of optical 

spectroscopy [5], Hall effect [6] and angle-resolved photoemission spectroscopy [7–9]. 

This is quite different from pnictide superconductors which have both electron and hole 

pockets at the Fermi surface [10]. Superconductivity of such iron selenides was reported 

to coexist with antiferromagnetism (AFM), its ordering temperatures TN as high as ∼550 

K [11–15], and large magnetic moments of 3.3 µB for each Fe atom [11, 15]. Theoretical 

[16] and experimental [11] studies on K0.8Fe1.6Se2, which is thought to be the parent 

compound of these superconductors, revealed that the ground state of this compound is in 

reality a quasi-two-dimensional blocked checkerboard antiferromagnetic semiconductor 

(or insulator). The Fe vacancies have been proposed to be the major players of the 

observed superconductivity and many interesting physical properties [15, 17-18].  

Superconductivity has been thought to be closely related to the quantum critical 

transition (QCT) in many correlated electronic systems such as cuprates [19-22], heavy 

fermions [23-24], organic conductors [25-26] and iron pnictides [27-29]. The quantum 

states are determined by the lattice, charge, orbital and spin degrees of freedom in 

materials. These factors can be manipulated by control parameters including pressure, 
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magnetic field and chemical composition. Among these parameters, pressure is a clean 

way in tuning lattice and electronic structures, as well as the interaction between them. 

In this Letter, we report an experimental discovery of pressure-driven quantum 

criticality in the newly discovered iron-selenide superconductors K0.8FexSe2 (x=1.7 and 

1.78) through resistance and structure measurements. We find that superconductivity in 

the two superconductors investigated is gradually suppressed with the applied pressure 

and eventually disappears at 9.2 GPa for K0.8Fe1.7Se2 and 9.7 GPa for K0.8Fe1.78Se2, 

around the pressure of which the superstructure of Fe vacancies vanishes and the metallic 

non-Fermi liquid (NFL) behavior characterized by linear-temperature-dependent 

resistance persists over a wide temperature region. Meanwhile, the activation energy for 

the electronic transport of the high-temperature resistance approaches to zero. The 

presence of such pressure-induced QCT classifies the iron-selenide superconductors into 

the quantum matter with quantum criticality.  

High-pressure electrical resistance measurements on K0.8FexSe2 (x=1.7 and 1.78) 

single crystals were carried out in a diamond anvil cell made from Be-Cu alloy in a house 

built refrigerator. The chemical composition was identified by using ICP analysis. 

Diamond anvils of 600 and 300 µm flats were used and the corresponding sample holes 

with 300 µm and 100 µm in diameter were made in rhenium gaskets for the individual 

two runs. Insulation from the rhenium gasket was achieved by a thin layered mixture of 

c-BN (cubic boron nitride) powder and epoxy. The crystal was placed on the top anvil 

and then pressed into the insulating gasket hole with leads. NaCl powders were employed 
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as pressure medium. The pressure was determined by the ruby fluorescence method [30]. 

A standard four-probe technique was adopted in these measurements. Electrical 

resistance measurements at ambient pressure and magnetic field were performed using a 

Quantum Design Physical Property Measurement System. Powder X-ray diffractions 

performed at ambient and high pressure were used to obtain the structural information 

based on the powders from the cleaved pieces of crystals. Rietveld refinements were 

performed by using the FULLPROF package [31].  

  Figure 1(a) shows the temperature dependence of the in-plane resistance of a 

K0.8Fe1.7Se2 single crystal sample at various pressures. The superconducting transition 

occurs at 32.5 K and reaches zero resistance at 30.6 K at ambient pressure. A remarkable 

feature of this superconductor is that its resistance exhibits a large hump showing a 

crossover from semiconducting behavior to metallic behavior at TH. This hump 

phenomenon has not been found in FeAs-based superconductors whose normal resistance 

behavior is metallic. Interestingly, the maximum resistance at TH is dramatically reduced 

when pressure is applied. Simultaneously, Tc is suppressed and disappears at pressure 

above 9.2 GPa (Fig. 1(b)). Releasing pressure from 9.2 GPa, both Tc and the resistive 

hump are recovered together, strongly suggesting that both phenomena are 

interconnected. We also performed high-pressure resistance measurements for 

K0.8Fe1.78Se2 single crystal, whose composition is slightly different from K0.8Fe1.7Se2 , and 

found the same behavior of pressure-induced suppression of superconductivity in this 

compound, indicating that it is common that pressure has a negative effect on the 
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superconductivity of this kind of iron-selenide superconductors.  

Figure 2a shows the pressure dependence of Tc of the two samples with x=1.7 and 

1.78. Tc exhibits a systematic reduction with pressure and disappears at the lowest 

temperature 4.2 K of our refrigerator above 9.2 GPa. To understand the picture emerged 

in the present study, we performed high-pressure X-ray diffraction measurement at 

beamline BL15U1 of the Shanghai Synchrotron Radiation Source for the sample 

K0.8Fe1.78Se2. The most striking feature of the studied compounds is the existence of the 

correlation between the Fe-vacancies ordered with a √5×√5 superstructure in the 

Fe-square lattice and an unusual AFM order with large magnetic moment per Fe atom 

[11]. From the experimental results reported [11, 14], it is found that the ordered 

Fe-vacancies construct the AFM order in the iron selenide superconductors investigated. 

Once the Fe-vacancy ordering is absent, its superstructure peak is disappeared and the 

sample undergoes a transition from a AFM state to a paramagnetic (PM) state [11, 14], 

which allows us to trace the magnetic structure evolution with pressure by the way of 

characterization of Fe’s superstructure peak. As seen in Fig. 2b, we found that a 

tetragonal phase with I4/m symmetry exists in the sample at pressure below 9.2 GPa. 

With increasing pressure to 10.3 GPa, the superstructure peak (110) is completely 

suppressed, revealing the full suppression of AFM ordering with applied pressure. It is 

worthy to note that superconductivity vanishes when the superstructure peak of the 

Fe-vacancy ordering is absent. The results give an evidence for the presence of 

pressure-induced QCT in the iron selenide superconductor. We propose that the quantum 
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critical point (QCP) should exist in the pressure range between 9.2 and 10.3 GPa. Below 

the QCP, the sample studied is in the AMF state with I4/m symmetry, while above the 

QCP, the sample has I4/mmm symmetry and loses its AFM ordering.  

Pressure-driven magnetic transition in this kind of superconductor has been observed 

recently through 57Fe-Mössbauer measurements [32]. It has been shown a clear 

AFM-to-PM phase transition in the compressed superconductor. At transition pressure, 

its superconductivity is completely suppressed. This suggests that application of pressure 

can suppress the AFM long-range ordering and produce a new magnetic state. 

We also make the actual fits to the temperature dependence of the normal state 

resistance in low temperature side (slightly below TH ) for the data obtained at each 

pressure point, based on the form of ρ=ρ0+ATα.  We found that the power α is pressure 

dependent, varying from initial α=2.7 at ambient pressure for both superconductors to 

α=1 at pressure above 9.2 GPa for K0.8Fe1.7Se2 and above 9.7 GPa for K0.8Fe1.78Se2, as 

shown in Fig.2a. The electron response of the systems with pressure suggests that 

application of pressure drives the systems undergoing a transition from a Fermi liquid 

(FL) behavior to a NFL behavior, accompanying the transition from superconducting to 

non-superconducting state. These findings provide further evidence for the existence of 

the pressure-induced quantum critically in Ke0.8FexSe2 (x=1.7 and 1.78) superconductors. 

We used the structural determination to clarify the origin of the resistance hump at 

TH. Figure 3(a) shows the ambient pressure X-ray diffraction patterns at selected 
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temperatures down to 60 K. The data demonstrate that the sample has a tetragonal 

ThCr2Si2-type structure with space group I4/m over the temperature range crossing TH, 

indicating that no structural transition can be detected. As expected, the lattice parameters 

a and c decrease smoothly with decreasing temperature (Figs. 3(b) and 3(c)). Our data 

offer clear evidence in supporting that the hump is irrelevant to any structural transition.  

   Figure 4 shows the temperature dependence of the resistance of K0.8Fe1.7Se2 at 

magnetic fields of 0, 3 and 7 T. As seen, TH is nearly unchanged when the magnetic field 

is applied. Since the hump feature is neither related to a magnetic transition nor a 

structural transition, we propose that this feature may result from a competition between 

semiconducting state and metallic state in the superconducting sample, in which 

semiconducting behavior is dominated at higher temperature region above TH but metallic 

behavior is prevailed below TH. 

Remarkable increase in TH is observed in the sample at high pressure as shown in Fig. 

5a. The phase transformation occurred above TH from low-pressure semiconductor to the 

high-pressure metal takes place at around 9 GPa. This is the pressure at which 

superconductivity disappears, as shown in Fig. 2. The exact transition pressure is 

estimated from the pressure dependence of the activation energy for the electrical 

transport in the high-temperature semiconducting state (Fig. 5(b)). The extension of the 

fitting curve yields a critical pressure of 8.7 GPa. Here, the activation energy is obtained 

by fitting the temperature dependence of the resistance in terms of an Arrhenius equation. 

The reduction of activation energy (EA) with the applied pressure is suggested to 
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originate from the mechanism: pressure minimizes the gap which gives rise to a 

semiconducting-to-metal transition. As a result, the remarkable increase in TH with 

pressure can be understood by the scenario that the pressure-induced gap shrinkage 

enhances the metallicity of the sample.  

The transition from the AFM phase to the PM phase determined by characterization 

of superstructure of ordered Fe vacancies and the transition from a metallic FL behavior 

to a NFL behavior, together with the phase transformation above TH from the 

low-pressure semiconductor to high-pressure metal and from superconducting phase to 

non-superconducting phase, demonstrate that a QCP exists at ~10 GPa . We noted that 

the change around the QCP from the coexisted AFM state and FL behavior to the PM 

state and NFL behavior in these iron selenide superconductors is different from that of 

copper oxide superconductors [22]. In this strongly correlated electronic oxide materials, 

the FL behavior appears in the overdoped system in which the AFM ordering no longer 

exists and superconductivity is absent [22, 33-34]. Therefore, the very large Fe moment 

[11, 14] and the unusual FL behavior in this kind of iron selenide superconductor indicate 

that its quantum criticality is quite unique.  

It is generally believed that a QCT in an electron system can induce a quantum 

correlated state, from which a superconducting state emerges below a certain 

temperature, resembling that seen in cuprates and heavy fermion superconductors [22, 

24, 33]. In the extended high-pressure studies on these iron selenide superconductors, 

we found a new superconducting phase appears at pressure around 10.5 GPa for 
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K0.8Fe1.7Se2 and 10.7 GPa for K0.8Fe1.78Se2 single crystals after the elimination of the 

initial superconducting phase [35]. The maximum Tc of the second superconducting 

phase reached 48 K, higher than the maximum Tc of the first superconducting phase. 

From the results of this Letter, we note that the emergence of the second 

superconducting phase is at the pressure where the system loses its AFM ordering. 

Accordingly, we propose that the reemerging superconductivity in the studied samples 

should be driven by the quantum critically reported in this Letter. 

In summary, we reported the pressure-driven quantum criticality in the newly 

discovered superconductors K0.8FexSe2 (x=1.7 and 1.78) through a systematic 

investigation of electrical transport and structural properties. Upon approaching the QCP 

around 10 GPa, superconductivity tends to disappear and the activation energy for the 

electrical transport of the high-temperature resistance goes to zero. We have presented 

experimental evidence for the coexistence of AFM state and FL behavior below the QCP, 

as well as the coexisted PM state and NFL behavior above the QCP. The observed 

quantum criticality may provide important information in shedding the insight on the 

underlying mechanism of superconductivity in the iron-selenide superconductors.  
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Figure captions:  

Figure 1 (Color online) Temperature dependence of the electrical resistance of a 

K0.8Fe1.7Se2 single crystal measured at different pressures and in the temperature range of 

4.2-290 K (a) and of 4.2-50 K (b). The arrow in (a) shows a transition temperature TH of 

the resistance in a hump shape from its high-temperature semiconducting to 

low-temperature metallic behavior. The arrow in (b) denotes the superconducting 

transition temperature Tc. 
 

Figure 2 (Color online) (a) Pressure dependence of the superconducting transition 

temperature Tc and power α obtained from fits with ρ=ρ0+ATα for K0.8FexSe2 (x=1.7 and 

1.78) single crystals. (b) The X-ray diffraction patterns of K0.8Fe1.78Se2, performed with a 

wavelength of 0.6888 Angstrom. (c) Intensity of superstructure peak (110) of Fe 

vacancies as a function of pressure. The inset of Fig.2c display the schematics of the 

AFM state, in which the spin order is ferromagnetic groups oriented along the c-axis and 

couples antiferromagnetically, and the PM state in higher pressure region.    

 

Figure 3 (Color online) (a) X-ray diffraction patterns of the K0.8Fe1.7Se2 sample collected 

at different temperatures and ambient pressure. (b) and (c) The refined lattice parameters 

a and c as a function of temperature.  
 

Figure 4 (Color online) Temperature dependence of the resistance of a K0.8Fe1.7Se2 single 

crystal with magnetic fields applied along the c axis of 0, 3, and 7 T, respectively. The 

inset is an extended view with normalized resistance at 35 K around the superconducting 

transition. 
 

Figure 5 (Color online) Pressure dependence of (a) TH in the hump shape and (b) the 

activation energy of the electric transport of the high-temperature resistivity of a 

K0.8Fe1.7Se2 single crystal. The line in (b) is the linear fitting to the data points. The 
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vertical dashed line denotes the phase boundary.  

 

 

Fig.1 Guo et al 
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Fig.2 Guo et al 
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Fig. 3 Guo et al 
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Fig. 4 Guo et al 
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Fig. 5 Guo et al 


