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Jelena Klinovaja, Suhas Gangadharaiah, and Daniel Loss
Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland

We consider theoretically an armchair Carbon nanotube (CNT) in the presence of an electric
field and in contact with an s-wave superconductor. We show that the proximity effect opens up
superconducting gaps in the CNT of different strengths for the exterior and interior branches of
the two Dirac points. For strong proximity induced superconductivity the interior gap can be of
the p-wave type, while the exterior gap can be tuned by the electric field to be of the s-wave type.
Such a setup supports a single Majorana bound state at each end of the CNT. In the case of a weak
proximity induced superconductivity, the gaps in both branches are of the p-wave type. However,
the temperature can be chosen in such a way that the smallest gap is effectively closed. Using
renormalization group techniques we show that the Majorana bound states exist even after taking
into account electron-electron interactions.

PACS numbers: 73.63.Fg, 74.45.+c

Introduction. Majorana fermions in solid state sys-
tems have attracted considerable attention recently [1–
10]. In particular, the possibility of realizing them as
bound states at the ends of semiconducting nanowires in
the proximity of an s-wave bulk superconductor has led
to much activity. Such setups require a Zeeman split-
ting, typically generated by an external magnetic field
[11], that must be larger than the proximity induced gap
to induce an effective p-wave superconductor in the topo-
logical phase. Such a magnetic field, however, tends to
destroy the gap in the bulk superconductor itself, and
thus a delicate balance must be found [12]. It is therefore
very desirable to search for Majorana-scenarios which do
not require magnetic fields.

One of the prerequisites for a Majorana bound end
state (MBS) is the existence of helical modes, i.e. modes
which carry opposite spins in opposite directions. It has
been shown recently that such helical states are induced
in Carbon nanotubes (CNT) via spin-orbit interaction
(SOI) by an external electric field E [13, 14]. This mecha-
nism works optimally for a special class of metallic CNTs:
armchair CNTs (N,N). This class is characterized by a
spin-degenerate low-energy spectrum around the two in-
equivalent Dirac points, K and K ′. This degeneracy can
be lifted by E which gives then rise to helical modes.

However, when putting the CNT in contact with an
s-wave superconductor (see Fig. 1) with the goal to gen-
erate MBS the following problem is encountered. The
two Dirac points K and K ′ are Kramers partners (see
Fig. 2) and thus the superconducting pairing induced via
the proximity effect will involve both of them, i.e. left
(right)-moving electrons from the branch at K get paired
with the right (left)-moving electrons from the branch at
K ′ to form an s-wave Cooper pair with zero total mo-
mentum. This results in two superconducting gaps, an
‘exterior’ one, ∆e, and an ‘interior’ one, ∆i. Thus, in
general, we expect two MBS at each end of the CNT (i.e.
four in total). This, however, is problematic as the Ma-
jorana pair at a given end can combine to form a single

FIG. 1. (a) An armchair nanotube (cylinder) is placed on
top of a superconductor (blue slab). The x-axis points along
the nanotube. An electric field E is applied perpendicular
to the nanotube, say along y-axis [17]. There are two non-
equivalent lattice sites: A (light red) and B (light green).
(b) The distances between the superconductor surface and
the atoms of sublattice A (dark-red row) and of sublattice B
(dark-green row) are assumed the same. Thus, the tunneling
amplitudes to the different sublattices are (nearly) equal.

fermion by local perturbations. Thus, the question then
arises if there exists a regime with only one MBS at each
end [15]. As we will show, the answer is affirmative but
under rather stringent conditions. One of them requires
a comparable tunnel coupling of the A and B sublattices
of the CNT to the superconductor, see Fig. 1. Using
the interference mechanism first described by Le Hur et

al. [16], we will show that for this particular case ∆e

(∆i) gets enhanced (suppressed) due to constructive (de-
structive) interference in the tunneling process. If ∆e/i

is smaller (larger) than the gap opened by E, then the
coupling between the two Dirac points is of p-wave type
(s-wave type). This leads to two regimes for MBS. In
the first one, only one of two branches has a p-wave gap,
thus giving rise to only one MBS at each end of the CNT.
In a second regime, where both branches have a poten-
tial for p-wave pairing, the temperature T can be cho-
sen to lie between ∆e and ∆i, so that only the exterior
branches will go fully superconducting, whereas the inte-
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rior branches stay normal. Again, a single pair of MBS
in the CNT emerges. We further investigate the effect
of interactions on the MBS. This is particularly impor-
tant for the second regime due to the presence of gapless
states from the interior branches that could be harmful
to the MBS. However, using bosonization techniques we
will dispel these concerns and show that for screened in-
teractions the MBS remain stable although they can get
substantially delocalized similar to the simpler case of
Rashba wires [8].
Nanotube spectrum. We consider an armchair CNT in

the presence of an electric field E applied perpendicu-
lar to the CNT axis (see Fig. 1)[17]. Taking into ac-
count the spin-orbit interaction the low-energy sector is
described by an effective Hamiltonian around the Dirac
points given by [13]

H = ~υFkτ3σ2 + τ3eEξSzσ2 + αSxσ1, (1)

where k is the momentum along the nanotube axis taken
from the Dirac point, σi is the Pauli matrix on the sub-
lattice space (A,B) associated with the honeycomb unit
cell, and Si is the spin operator with eigenvalues ±1.
The Pauli matrix τi acts on the K,K ′-subspace. Here,
vF ≃ 106 m/s is the Fermi velocity, and the parameter
α arises from the interplay between SOI and curvature
effects [13, 18, 19]. In the framework of the tight-binding
model, α = −0.08meV/R[nm], where R is the radius of
the CNT [13]. The parameter ξ ≃ 2×10−5nm is given by
a combination of hopping matrix elements, on-site dipole
moment, and SOI [14].
The spectrum given by H (Eq. 1) consists of four

branches (see Fig. 2), εn(k) = ±eEξ ±
√
α2 + (~υFk)2

for each Dirac point. In the following, we label the
four branches by n = 1, ..., 4. For each k, n = 1 cor-
responds to the highest eigenvalue and n = 4 to the
lowest. The remarkable feature of the spectrum is the
existence of helical modes, which carry opposite spins
in opposite directions. The average value of the spin
along the CNT-axis (〈Sx〉) or parallel to E-field (〈Sy〉)
is equal to zero. The projection of the spin along the
z-direction is equal to 〈Sz〉 = sin ζ, where ζ is defined
by ζ = arcsin(~υFk/

√
α2 + (~υF k)2) and depends on

the wavevectror k. Note that the eigenvectors ψ
e/i
nK and

ψ
e/i
nK′ are independent of E. For a (10,10)-CNT and
E = 1V/nm, and with a Fermi level µ tuned between
the two lowest electronic states polarizations close to 90%
can be reached [14].
Proximity induced superconductivity. If a CNT is in

contact with an s-wave bulk superconductor, then the
proximity effect induces superconductivity also in the
CNT which at the BCS mean-field level is described by

∑

i,j,i′,j′,s

(∆dc
†
iprs

c†jpr s̄
+∆nc

†
i′prs

c†j′pr s̄
) + h.c., (2)

where we concentrate on the contribution coming from
the π-bands formed by the radial pr-orbitals [13, 20].

FIG. 2. The energy spectrum around the Dirac points K, K′

for a (10,10)-CNT in an electric field E = 1 V/nm, which con-
sists of exterior (full line) and interior (dashed line) branches.
Each branch of the spectrum is characterized by the sign of
the spin projection along the z-axis 〈Sz〉 (red: spin down,
blue: spin up). The Fermi level µ lies inside the gap given by
2eEξ, and δ = eEξ + α− µ.

Here, c
(†)
iprs

are the standard fermionic annihilation (cre-
ation) operators, with s and s̄ denoting opposite spin
states. The sum runs over atoms which are in contact
with the bulk superconductor: i and j belong to the same
sublattice, whereas i′ and j′ belong to different sublat-
tices. Generically, the lattice constant of the supercon-
ducting material is not commensurate with the one of
graphene. The CNT is placed in such a way that the dis-
tance from the superconducting surface to the A and B
atoms is the same (see Fig. 1), which is satisfied for arm-
chair CNTs. This ensures equal probability amplitude
for tunneling to either sublattice. Since the phase of the
superconducting order parameter ∆d/n can be chosen ar-
bitrary, we assume them to be real. The coupling terms
in Eq. (2) conserve momentum, so they pair Kramers
partners from the opposite Dirac cones. The process in
which the Cooper pair tunnels from the superconductor
to either one of the sublattice σ is written as

∆d

∑

σ,s,κ

sgn(σs̄)ψ†
σsκψ

†
σs̄κ̄ + h.c. , (3)

where the indices κ and κ̄ denote opposite Dirac points.
The operators ψσsκ and ciprs are connected via Fourier
transformation [14]. The pairing term between electrons
in different sublattices are

i∆n

∑

σ,s,κ

sgn(s̄)ψ†
σsκψ

†
σ̄ s̄κ̄ + h.c. (4)

To simplify the notation we introduce Pauli ma-
trices ηi which act on the particle-hole subspace,
and we work in the basis Ψ̃ = (Ψ,Ψ†), with Ψ =
(ψA↑K , ψB↑K , ψA↓K , ψB↓K , ψA↑K′ , ψB↑K′ , ψA↓K′ , ψB↓K′).
This allows us to rewrite Eqs. (3) and (4) in a compact

form Hsc = Ψ̃
†HscΨ̃,

Hsc = −η2τ1Sy∆d σ3 + η1τ1Sy∆n σ1. (5)
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In the same basis, H in Eq. (1) can be rewritten as
H = 1

2 (~υF kσ2 + eEξη3τ3Szσ2 + αη3Sxσ1). To ex-
press the coupling between the different energy states
in a canonical form we work in the basis of eigenvec-
tors {ψe

nK , ψ
i
nK , ψ

e
nK′ , ψi

nK′}. For the states at the Fermi
level, n = 2, Hsc becomes

∑

l=e,i

∆l(ψ
l
2K′ψl

2K − ψl
2Kψ

l
2K′) + h.c. , (6)

with different coupling strengths for the exterior (e) and
interior (i) branches,

∆e/i = ∆d ±∆n |sin ζ| . (7)

We note that the sign reflects the constructive and de-
structive interference, resp., in the tunneling process from
the bulk-superconductor into the CNT [16]. The fi-
nal effective Hamiltonian for states at the Fermi level
(expressed in terms of right- and left-movers, see be-
low) takes the form Hn=2 = Heβe + Hiβi, where Hl =
kτ3 − ∆lη2τ2, where βe/i = (1 ± β3)/2 (with the Pauli
matrix β3) acts on the exterior/interior branch subspace.
Hl describes a one-dimensional p-wave topological super-
conductor of class DIII, satisfying time reversal, particle-
hole, and chirality symmetry [22]. In Eq. (6), we ne-
glected a term ∆n cos ζ characterizing the coupling be-

tween ψ
e/i
2K and ψ

e/i
4K′ which are separated by the particle-

hole gap 2α, see Fig. 2. In the following we consider the
limit of equal diagonal and non-diagonal parameters, i.e.,
∆d ≈ ∆n [21]. We note that for k ≫ α/~υF the coupling
between the interior branches is close to zero and that
between the exterior branches is equal to 2∆d. We show
that this asymmetry in the coupling strengths is crucial
for the existence of Majorana bound states in CNTs.
Majorana bound states. Next, we obtain the MBS fol-

lowing the derivation of Ref. [8]. For illustrative pur-
poses we derive the bound states that arise by con-
sidering the exterior branches. The field correspond-
ing to the exterior branch is defined as, ψe(x) =
ψR
2K(x)ei(kF +K)x + ψL

2K′(x)e−i(kF+K)x, where ψR
2K(x)

and ψL
2K′(x) are the slowly moving right and left com-

ponents about the K and K ′ points, resp. Denoting
the length of the CNT by L, the boundary conditions,
ψe(x = 0) = ψe(x = L) = 0, yield the restriction
ψR
2K(x) = −ψL

2K′(−x). Thus, the kinetic term is given

by H
(1)
0 = −ivF

∫ L

−L ψ
R†
2K(x)∂xψ

R
2K(x), and the p-wave

pairing term between the exterior branches by

−∆e

∫ L

−L

dx sgn(x)[ψR
2K(x)ψR

2K(−x) + h.c.] . (8)

Solving for the zero energy mode localized around x = 0,
we obtain the MBS ΨM

e (x) ∝ γe sin[(K + kF )x]e
−x/ξe ,

where γe = γ†e , and it is assumed that the localization
length, given by ξe = ~vF /2∆e, satisfies ξe ≪ L. Simi-
larly for the interior branches, with the index e replaced
by i.

FIG. 3. The particle-hole spectrum of a CNT (10,10) in the
presence of an electric field E with the Fermi level µ tuned
inside the energy gap between the two upper branches (solid
black lines). All energies are counted from µ = 0.11 meV (see
Fig. 2). By proximity effect, superconducting gaps ∆e,i are
opened at the Fermi points kF . (a) Here, the E-field is fixed
at 1 V/nm and ∆d is varied. for ∆d = 5 µeV < ∆c1 both
branches are in the p-wave phase (dotted blue line). At the
critical value ∆d = 23 µeV = ∆c1 the gaps induced by the
proximity effect and by E are equal (dot-dashed red line). For
∆d = 30 µeV > ∆c1 only the interior branch is in the p-wave
phase (dashed green line). Keeping ∆d constant at 11 µeV
and changing E, one goes from a regime [dashed blue line in
(b)] with E = 0.4 V/nm < Ec1 = 0.6 V/nm where only the
interior branch is in the p-wave phase to a regime [dashed
green line (c)] with E = 1 V/nm > Ec1 = 0.6 V/nm where
both branches are in the p-wave phase.

In general, the Majorana modes arising from the inte-
rior and exterior branches at the same end of the CNT
are not protected and can combine into a fermion. To
avoid such a scenario one needs to ensure the presence of
only one single MBS at each end of the CNT. This can
be achieved in two ways.

First, there is a window where the electric field E can
be chosen in such a way that the superconductivity in
the exterior branch can be tuned into a non-topological
s-wave superconductor, while the interior one still re-
mains a topological p-wave superconductor of class DIII
[22] (see also above). In this case, only the interior
branch supports a MBS at each end of the nanotube,
and we refer to this as a topological phase of the CNT
(see dashed green line in Fig. 3a). Concretely, such a
regime is reached for ∆e(kF ) > δ > ∆i(kF ), where
kF ≈

√
(µ+ eEξ)2 − α2/~vF and δ = eEξ+α−µ. With

Eq. (7) this criterion becomes equivalent to ∆c2 & ∆d &
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∆c1, where ∆c1/c2 = δ/(1 ± sin ζ). For a given value of
∆d, the experimentally viable approach to drive the sys-
tem into the topological phase is to tune the electric field
E. Indeed, for Ec1 & E & Ec2 (see Fig. 3b) the exterior
branch is in the s-wave phase, while the interior one is in
the p-wave phase. The critical value of the electric field
Ec1 (Ec2) is determined by the condition δ = ∆e(kF )
(δ = ∆i(kF )) [23]. Similarly, we can tune between the
phases by changing the Fermi level. [In passing we note
that the gap eEξ, and thus δ, get enhanced by interaction
effects around k = 0 [24], which is useful for experimental
realizations. However, for simplicity we will ignore this
feature here.]
Second, in the regime ∆d . ∆c1 (see dotted blue line

in Fig. 3a) or E & Ec1 (see Fig. 3c) both branches are
dominated by p-wave pairing. If the temperature is lower
than both gaps, i.e. kBT < ∆e,i, then there is an even
number of MBS at each end of the nanotube, and the
CNT is in the topologically trivial phase. However, in
the intermediate regime with ∆e > kBT > ∆i [25], the
interior gap ∆i is closed and the Majorana states are
removed, yet those from the exterior branches remain,
and the CNT is again in the topological phase. In the
following we consider this latter scenario and discuss the
role of interactions coming from the gapless states of the
interior branch.
Interactions. Interactions effects are most conveniently

described by linearizing the spectrum of the fermionic

fields ψ
e/i
2K and ψ

e/i
2K′ near the Fermi momentum kF and

expressing them in terms of the bosonized fields. The
quadratic part of the bosonized Hamiltonian thus ob-
tained has the following form,

H0 =
1

2

∑

n=±

{υnKn(∂xθn)
2 +

υn
Kn

(∂xφn)
2}, (9)

where ∂xφ+ and ∂xφ− are the sum and difference of den-
sities between the two fermionic bands. The fields conju-
gate to them are defined as, θ+ and θ−, resp. The param-
eters K+ ≃ 1−U0/πυ andK− ≃ 1+(1−〈Sz〉2)U2kF

/2πυ
encode information about the interactions and the renor-
malized velocities are given as υ+ ≃ υF +U0/π, and υ− ≃
υF + b′(1 + 〈Sz〉2)/4π, where the b′-term [26, 27] is due
to the backscattering contribution. Here, U0,2kF

denotes
the Fourier component of the screened Coulomb interac-
tion. Since 〈Sz〉2 < 1 and thus K− > 1, we conclude [28]
that the forward scattering term ∝

∫
dxdτ cos(

√
8πφ−)

scales to zero.
Additional terms induced by the proximity effect lead

to a modified Hamiltonian given by

H = H0 +
∆e

2πa
cos

√
2π(θ+ − φ−). (10)

Since we assume here ∆e > kBT > ∆i, the term due to
the interior branches, ∆i

2πa cos
√
2π(θ+ + φ−), is smeared

out by temperature effects and will not be considered.

Using standard techniques [28, 29], we derive the fol-
lowing renormalization group (RG) equations,

dK+

dl
=
f2

4

(
1 +

4γK+K−

(1 + γ)2

)
, (11)

dK−1
−

dl
=
f2

4

(
1 +

4γ

K−K+(1 + γ)2

)
, (12)

dγ

dl
=
f2

4

γ(1− γ)K+

(1 + γ)(K+K− + 1)
, (13)

df

dl
= f

(
2− 1

2K+
− K−

2

)
, (14)

where the flow parameter l = ln[a/a0], f = 2∆ea, and γ
is the ratio of the velocities υ+/υ−. We note that for the
non-interacting case γ is already at its fixed point, γ = 1,
and including interactions (the repulsive interactions are
assumed to be well screened) causes only a small devia-
tion from unity [30, 31]. Thus, it is convenient to assume
γ = 1, and under this assumption K+K− is a constant,
given in leading order by unity. Above RG equations
now acquire the simple form dR/dl = f2/2 and df/dl =
f(2−1/R), where R = (1/K++K−)/2. These equations
are exactly the same as in Ref. [8] derived for interact-
ing spinless fermions in an effective p-wave regime. We
conclude that for a CNT whose initial values of the pa-
rameters lie in the regime f0 > 2

√
2R0 − ln(2R0e) has

its RG flow such that both K+ and K− approach the
non-interacting value. At this point the problem can be
refermionized into a set of decoupled gapped and gapless
fermions and for a strongly screened CNT with initial
value e.g. K+ = 0.8 the localization length ξe increases
by 25%. Therefore, we conclude that the MBS which
arise from gapped fermions remain protected even in the
presence of interacting gapless fermions and simply ac-
quire a renormalized ξe.

Conclusions. We have shown that an armchair CNT
with helical modes generated by an external electric field
is a promising candidate material for Majorana bound
states. By placing the CNT on top of an s-wave super-
conductor and tuning the Fermi level and the electric
field, one can induce pairing of Kramers partners from
opposite Dirac points. This pairing opens up inequiva-
lent gaps for the exterior and the interior branches. The
Majorana modes obtained are stabilized by either tun-
ing the electric field such that the exterior gap acquires a
predominantly s-wave character or by increasing the tem-
perature to remove the pairing in the interior branches.
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