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We consider (2+1)-dimensional topological quantum states which possess edge states described
by a chiral (1+1)-dimensional Conformal Field Theory (CFT), such as e.g. a general quantum Hall
state. We demonstrate that for such states the reduced density matrix of a finite spatial region of the
gapped topological state is a thermal density matrix of the chiral edge state CFT which would appear
at the spatial boundary of that region. We obtain this result by applying a physical instantaneous
cut to the gapped system, and by viewing the cutting process as a sudden “quantum quench” into
a CFT, using the tools of boundary conformal field theory. We thus provide a demonstration of the
observation made by Li and Haldane about the relationship between the entanglement spectrum
and the spectrum of a physical edge state.

Topological phases of matter are gapped quantum
states which cannot be adiabatically deformed into a
completely ‘trivial’ gapped system such as a trivial band
insulator, without crossing a quantum phase transition.
They are not characterized by symmetry breaking, but
instead by certain global topological properties such
as the presence of (topologically) protected edge states
and/or a ground state degeneracy which depends on the
topology of the surface on which the state resides[1].
Topological states of matter of this kind which have been
discovered in nature include the integer and fractional
quantum Hall states[2], and the recently discovered time-
reversal invariant topological insulators[3–6].

Quantum entanglement is a purely quantum mechan-
ical phenomenon which has no classical analog. For any
pure quantum state (typically the ground state) of a sys-
tem consisting of two disjoint subsystems A and B, com-
plete information about the bipartite entanglement be-
tween the two subsystems is described by the reduced
density matrix. Quantum entanglement provides an al-
ternative characterization of the properties of the many-
body system[7]. For example, as discovered by Levin and
Wen[8], and by Kitaev and Preskill[9], the entanglement
entropy of a topologically ordered state in a region of
linear size l in two-dimensional position space contains
a universal l-independent term, the ‘topological entan-
glement entropy’ (TEE), which is a characteristic of the
topological order of the state. However, the TEE does
not provide a complete description of a topological state
of matter, since distinct topologically ordered states can
have the same TEE. More complete information about
a topological state of matter can be obtained from the
eigenvalue spectrum of the reduced density matrix, often
referred to as the entanglement spectrum[10]. In gen-
eral, the density matrix ρA describing the entanglement
between a subsystem A and the rest of the system can
be written in the form of ρA = e−HE , with HE a Her-

mitian operator. One important physical feature of the
so-defined entanglement Hamiltonian HE is that its low-
energy eigenstates correspond to those states in A, ap-
pearing in the Schmidt-decomposition[11] of the initial
pure state, which are most entangled with the rest of
the system. In general, HE is different from the physical

Hamiltonian of the system.

The focus of the present article is a remarkable ob-
servation made recently by Li and Haldane[10], and in
subsequent works, for topological phases whose physi-
cal Hamiltonian possesses low energy states at an open
boundary (‘edge states’). This includes fractional quan-
tum Hall states[10, 12–14], non-interacting topological
insulators[15, 16] and the Kitaev honeycomb model[17].
It was found that for those systems the low-energy ‘edge’
states of the physical Hamiltonian at an actual open
boundary of system A are in one-to-one correspondence
with the low-lying eigenstates of entanglement Hamilto-
nian HE (i.e. with the most entangled states). How-
ever, except for systems which can be reduced to non-
interacting fermion problems[15–17], such a correspon-
dence between the entanglement spectrum and the edge
state spectrum of the physical Hamiltonian has only been
supported by numerical evidence. No general argument
for the validity of such a correspondence has been pre-
sented so far[40]. It is the purpose of the present Letter to
demonstrate the general validity of this correspondence.

General setup– In this Letter, we show that for a generic
(2+1)-dimensional topological state which possesses edge
states described by a conformal field theory, the entan-
glement Hamiltonian HE is proportional to the Hamilto-
nian HL of a physical chiral (say L-moving) edge state
appearing an actual spatial boundary of subsystem A,
in the long-wavelength limit and in any fixed topologi-
cal sector. For example, our conclusion applies to all the
Abelian and non-Abelian quantum Hall states described
by Chern-Simons effective field theories in the bulk[18–
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21]. In order to relate the entanglement spectrum and
the spectrum of the physical edge state Hamiltonian, we
consider a bipartition of the toplogical state on a cylin-
der into two parts A and B as shown in Fig. 1 (a). The
(physical) Hamiltonian H can be written in the form

H = HA +HB +HAB (1)

where HA and HB denote the Hamiltonians in discon-
nected regions A and B, respectively, each of which has
(two) open boundaries. The term HAB couples regions
A and B across their joint boundary. For example,
for a 2D gapped tight-binding model H =

∑

〈ij〉 c
†
i tijcj

realizing[22] the integer quantum Hall effect, the term
HAB contains all the electron hopping terms across the
boundary between A and B.
Now we consider a deformed Hamiltonian containing a

parameter λ ∈ [0, 1] (similar to Ref. [23]):

H(λ) = HA +HB + λHAB (2)

By construction, H(λ = 0) is the Hamiltonian of the
two decoupled cylinders A and B, and H(λ = 1) is the
Hamiltonian of the whole cylinder A ∪ B. Since we are
interested in such topological states which possess chiral
edge states, the Hamiltonian H(λ = 0) will have chiral
and anti-chiral edge states propagating at the boundary
between regions A and B, as shown in Fig. 1 (b). When
λ 6= 0, the term λHAB introduces a coupling between
the regions A and B. Denote the bulk gap of the Hamil-
tonian H = H(λ = 1) by Eg. When the coupling λ is
small enough such that the energy scale of the coupling
term λHAB is much smaller than the bulk gap Eg, the
gapped bulk states described by HA and HB are almost
entirely unaffected by the coupling term λHAB , whose
main effect is then to induce an inter-edge coupling be-
tween the chiral and anti-chiral edge states. Since each
individual edge state is described by a chiral conformal
field theory (CFT), the theory of the two edges between
regions A and B is described by a non-chiral CFT. Thus
at low-energy the coupling term λHAB between regions
A and B is reduced to a local interaction in the CFT. For
simplicity, we assume that this interaction is a relevant
perturbation of the CFT in the renormalization group
(RG) sense, so that the two counterpropagating edges
will be gapped for arbitrarily small coupling λ. Thus
we expect that in this case the system described by the
Hamiltonian H(λ = 1) to be adiabatically connected to
that described by H(λ) for a small but non-vanishing
value of λ. In this case, the entanglement properties of
H(λ = 1) are expected to be the same as those of H(λ)
with a small λ. The latter describes the entanglement
between the left- and the right-movers of the edge state
CFT. It turns out that our result still holds when λ is
an (RG-) irrelevant coupling: a more detailed discussion
of this situation will be given below, as well as in the
supplementary material[24].

Below we will solve this entanglement problem for the
edge state CFT, by mapping it to a problem of a quan-
tum quench. We then solve the latter (quantum quench)
problem in the standard manner by using the work of
Calabrese and Cardy[25, 26] which employs the methods
of boundary conformal field theory (BCFT)[27].
Reduced density matrix of the edge CFT– Next we study
the entanglement properties of the Hamiltonian H(λ) for
small values of λ, which, as explained above, amounts to
the study of the (1 + 1) dimensional problem of coupled
edge states,

Hedge(λ) = HL +HR + λHint (3)

Here, HL andHR denote the Hamiltonians of left-moving
(L) and right-moving (R) edge states, and λHint a (RG-)
relevant inter-edge coupling. The L- and R- moving edge
states are the low-energy excitations of the subsystem
in regions A and B, respectively. Again, the entangle-
ment properties between the subsystems A and B are
reduced to those between left and right moving (1 + 1)-
dimensional edge states. If we denote the ground state of
the Hamiltonian Hedge(λ) from Eq.(3) by |G〉, then our
goal is to obtain the density matrix of the L-moving edge
state subsystem defined by

ρL = TrR (|G〉 〈G|) , (4)

where TrR denotes the trace over the R-moving edge state
degrees of freedom. In general, the ground state |G〉 will
depend on all the details of the coupling between the R-
and the L- moving edges states. However, due to the
gapless nature of Hedge(λ = 0) describing the decoupled

edges, certain universal properties can be inferred in the
long-wavelength limit without reference to any detailed
features of this coupling.

FIG. 1: (a) A topological state on a cylinder with a bipartition
into two regions A and B. (b) The deformed system (see
text) with the coupling between A and B regions weighted
by a factor λ ∈ [0, 1]. The system can be understood as
two cylinders A and B, with edge states propagating along
the boundary between A and B, coupled by an inter-edge
coupling. (c) For small enough λ, the coupling between the
gapped bulk states can be neglected, and the problem can
be reduced to an inter-edge coupling problem described by
a (1 + 1)-dimensional conformal field theory with a (RG-)
relevant coupling λHint.

In order to understand the entanglement properties
of the state |G〉, we relate them to another problem –
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the “quantum quench” problem. Consider a “quantum
quench” of the system composed of the coupled edges,
Eq. (3). For all times t < 0 the system is in the
ground state |G〉 of the Hamiltonian Hedge(λ0) with non-
vanishing coupling λ0 6= 0 between the edges. At time
t = 0 the coupling λ0 between the edges is suddenly
switched off, so that λ = 0 for t ≥ 0. After the quantum
quench, the left and right moving edge states evolve inde-
pendently with the HamiltonianHedge(λ = 0) =HL+HR

of the decoupled edges. Space- and time-dependent cor-
relation functions after a sudden quench, as above, have
been studied extensively by Calabrese and Cardy[25, 26],
who applied BCFT to obtain general properties of such
correlation function in the long-time and long-wavelength
regime. This is relevant for our purpose because the den-
sity matrix ρL is uniquely determined by the set of all
equal-time correlation functions of operators with sup-
port solely on the L-moving edge,

C(t, {xi}) =

〈G| eit(HL+HR)ÔL,1(x1)...ÔL,n(xn)e
−it(HL+HR) |G〉 ≡

≡ TrL

[

e−itHLρLe
itHLÔL,1(x1)...ÔL,n(xn)

]

. (5)

(All the coordinates x1, x2, ...xn reside entirely on the
L-moving edge.) In the quantum quench problem,
the ground state |G〉 of the coupled edge Hamiltonian
Hedge(λ0 6= 0) represents an initial condition at time
t = 0 for the evolution with the gapless (critical) decou-
pled edge system Hamiltonian HL + HR at subsequent
times t > 0. This initial state can be viewed[25, 26, 28] as
a boundary condition on the gapless theory of the right
and left moving edges.[41] It can thus be described using
the methods of boundary critical phenomena[29]. More-
over, in the present case of a one-dimensional edge, the
resulting boundary condition can be analyzed by using
the powerful tools of BCFT[27]. The key result that we
will use from the theory of boundary critical phenom-
ena is that an arbitrary boundary condition on a gapless
bulk theory will always renormalize at long distances into
a scale invariant boundary condition[25, 30, 31]. In a
(1+1) conformal bulk theory, such as the one describing
the one-dimensional edges, any scale invariant boundary
condition must be one of a known list of conformally
invariant boundary conditions[27]. Consequently, as em-
phasized in [25], in the long wavelength limit the correla-
tion functions at a general boundary condition described
by a general state |G〉 are equal to those at a confor-
mally invariant boundary condition described by a state
|G∗〉 which represents a (boundary) fixed point to which
the boundary state |G〉 flows under the renormalization
group (RG). The difference between |G〉 and |G∗〉 can be
represented by an imaginary time evolution operator,

|G〉 ≃ Z−1/2e−τ0(HL+HR) |G∗〉 (6)

where τ0 > 0 is the so-called extrapolation length[25, 29]
and stands for the RG “distance” of the general bound-

ary state |G〉 to the conformal boundary state |G∗〉.
Z = 〈G∗| e

−2τ0(HL+HR) |G∗〉 is a nomalization factor.
Physically, the energy scale 1/τ0 is determined by the
energy gap E(λ0) induced by the coupling term λ0Hint

between the edges.
In a so-called rational CFT[32] such as the one under

consideration, all conformal invariant boundary states
|G∗〉 are known[27] to be finite linear combinations of
so-called Ishibashi states[33] which have the form

|G∗,a〉 =

∞
∑

n=0

da(n)
∑

j=1

|k(a, n), j; a〉L ⊗ |−k(a, n), j; ā〉R . (7)

Here a denotes a topological sector in the underlying
topological theory, i.e. a topological flux threading the
cylinder in Fig. (1(a)), which is represented in the CFT
describing the edges by a primary state of a correspond-
ing conformal symmetry algebra (Virasoro or other) of
conformal weight ha. (ā denotes the conjugate sector
and state of conformal weight hā = ha.)
The label a runs over all possible particle types of the

topological state [32]. Here k(a, n) = 2π(ha + n)/l de-
notes the momentum, where l is the circumference of
the cylinder; j = 1, 2, ..., da(n) labels the elements of an
orthonormal basis in the subspace of fixed momentum
k(a, n). Notice that the L- (R-) moving edge system only
contains excitations with positive (negative) momentum.
We note that the state in Eq. (7) is an example of a so-
called maximally entangled state. The explicit form, Eq.
(7), of the Ishibashi states |G∗,a〉, resulting from confor-
mal invariance, is of great help in determining the form
of the reduced density matrix ρL for the L-moving edge.
Upon directly combining Eqs. (6) with (7) one obtains

|Ga〉 ≃

≃

∞
∑

n=0

e−2τ0vk(a,n)

Z
1/2
a

da(n)
∑

j=1

|k(a, n), j; a〉L ⊗ |−k(a, n), j; ā〉R

which yields the following form of the density matrix of
the L-moving edge upon tracing out the R-moving edge,

ρLa = TrR (|Ga〉 〈Ga|) ≃

≃

∞
∑

n=0

e−4τ0vk(a,n)

Za

da(n)
∑

j=1

|k(a, n), j; a〉L 〈k(a, n), j; a|L

= Z−1
a P̂a e−4τ0HL P̂a (8)

Here we have used the linear dispersion HL |k, j; a〉L =
vk |k, j; a〉L, HR |−k, j; ā〉L = vk |−k, j; ā〉R where v is
the edge state velocity and k stands for k(a, n). The label
a indicates that ρLa is an operator defined in the topolog-
ical sector corresponding to topological flux a threading
the cylinder, and P̂a is the projection operator onto that
sector of the Hilbert space of the CFT. In cylinder geome-
try there is no entanglement between different topological
sectors (denoted by different labels a).
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Eq. (8) is the central result of this work, which demon-
strates that the entanglement between L-moving and
R-moving edge states in a CFT induced by a relevant
coupling is always characterized by a “thermal” den-
sity matrix within a fixed topological sector (or primary
state in CFT). In other words, in each topological sec-
tor the “entanglement Hamiltonian” HE = − log ρL =
4τ0HL + logZ is proportional to the Hamiltonian HL of
a physical edge up to a possible shift of the ground state
energy in that sector which ensures the proper normaliza-
tion of the density matrix as a probability distribution.
Our result demonstrates not only that the excitation en-
ergies of the entanglement spectrum are the same as those
of the spectrum of the Hamiltonian of the edge state of
the topological system appearing (by assumption) at a
physical boundary of region A, in the long-wavelength
limit modulo a global rescaling, but also that the most
entangled states are in one-to-one correspondence with
the low-energy edge states which occur at this boundary.
Example: Free fermions– A simple example in which
the general notions, developed in the preceeding part
of this article, can also be illustrated using elementary
many-body techniques is that of the 2D integer quan-
tum Hall (IQH) state. This state can be described by a
free fermion theory, the entanglement properties of which
have been studied extensively in the literature[15, 16, 34].
However, it is still helpful to present the results here as
an illustration, in the language of the much more general
formulation obtained above. The edge states of an IQH
state with integer filling fraction ν = N consist of N fla-
vors of non-interacting chiral fermions. For simplicity, we
consider an IQH state with filling fraction N = 1, whose
edge state dynamics is governed by the Hamiltonian

HL =
∑

k

vkc†kck, HR = −
∑

k

vkd†kdk (9)

The simplest inter-edge coupling term is a single-particle
inter-edge tunneling

Hint = Eg

∑

k

(

c†kdk + d†kck

)

(10)

with Eg the bulk gap which acts as a high-energy cut-
off scale for the edge theory. The coupled Hamiltonian
HL + HR + λHint is a free Fermion Hamiltonian which
can be diagonalized by a unitary transformation to HL+
HR + Hint =

∑

k,s=±1 Ekγ
†
ksγks with the gapful energy

dispersion Ek =
√

v2k2 + E2
g . Here γk,i (i = 1, 2) are

quasiparticle annihilation operators. The ground state
|G〉 of this gapped system is determined by the conditions
γk,i |G〉 = 0 (i = 1, 2). One obtains[24] the following
explicit expression for |G〉 (unnormalized):

|G〉 = e−He |G∗〉 (11)

|G∗〉 = exp

{

−
∑

k>0

(

c†kdk + d†−kc−k

)

}

|GL〉 ⊗ |GR〉 .

and He ≃ 1
2Eg

(HL + HR) in the long wavelength limit.

The operators c†kdk and d†−kc−k with k > 0 create quasi-
particle excitations of the system of the two edges, so
that |G∗〉 is an equal-weight superposition of all quasi-
particle excitation states in the massless theory; this is
nothing but the Ishibashi state for the Free fermion CFT
(in the sector without topological flux). Thus, with this
form of He, we recover correctly (in the long wavelength
limit) the general relation (6); the extrapolation length is
τ0 = 1/2Eg. As expected, the energy scale 1/τ0 is deter-
mined by the energy gap 2Eg of particle-hole excitations.

Discussion.–We now briefly discuss the situation with λ
an (RG-) irrelevant coupling by considering the example
of a Laughlin 1/m state whose edge theory is described
by a Luttinger liquid[35],

L =
m

2π
(∂t − v∂x)φL∂xφL +

m

2π
(−∂t − v∂x)φR∂xφR

+λ cos

[

1

R
(φL − φR)

]

(12)

with λ the inter-edge tunneling. The electron tunneling
corresponds to R = 1 which is irrelevant. Therefore an
infinitesimal λ does not open a gap. A gapped state can
be induced by a sufficiently large λ > λc. However, as
is well-known, a marginal coupling term g∂µφL∂

µφR can
be added which can tune the scaling dimension of the
electron tunneling λ until it becomes relevant at some
gc. Our earlier argument applies to g > gc, in which case
the entanglement spectrum was shown to be that of a
chiral Luttinger liquid. Since tuning of g preserves the
gap of the pair of (1+1)D edge states, the entanglement
spectrum at g = 0 must be adiabatically connected to
that at g > gc, which means that it must also be a chi-
ral Luttinger liquid. More details are discussed in the
supplementary material[24].

Our analysis also applies to other systems described
by coupled CFTs, besides topological states. In partic-
ular, it provides an explanation of the recent numerical
and analytical results on the entanglement spectrum of
coupled spin chains[36]. Moreover, it may be interest-
ing to try to apply our approach to the quantum quench
problem and the dynamics of Stopo in topologically or-
dered systems[37]. Finally, since the relationship between
a general boundary state and a scale invariant boundary
condition which is the endpoint of the RG flow also holds
for higher dimensional scale invariant bulk theories[29],
we expect that our result will generalize to higher di-
mensional topological states, such as (3+ 1) dimensional
topological insulators, and especially the fractional topo-
logical insulators[38] which cannot be analyzed using free
fermion methods[15, 16]. Details of this generalization
will be left for future work.

In closing, we would like to note that the reduced den-
sity matrix (8) in the topological sector “a” yields an
entanglement entropy of the form S = −Tr (ρL log ρL) =
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αL − Stopo, with Stopo = log (D/da) the topological en-
tanglement entropy[8, 9]. Here da is the quantum dimen-
sion of the quasi-particle of type “a”, and D =

√
∑

a d
2
a

is the total quantum dimension. This relation to the
topological entropy has been noticed in Ref. [9], though
in that work the form of the density matrix as in our Eq.
(8) was taken as an assumption.[42] The present paper
proves this assumption.
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