
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Incompressible Wave Motion of Compressible Fluids
Oleg A. Godin

Phys. Rev. Lett. 108, 194501 — Published  9 May 2012
DOI: 10.1103/PhysRevLett.108.194501

http://dx.doi.org/10.1103/PhysRevLett.108.194501


 1

Incompressible Wave Motion of Compressible Fluids 

Oleg A. Godin* 

CIRES, University of Colorado and NOAA Earth System Research Laboratory, Physical 

Sciences Division, Boulder, Colorado 80305, USA 

PACS numbers: 47.35.-i, 92.60.hh, 92.10.Hm, 67.85.-d 

 

We consider linear waves in compressible fluids in a uniform potential field, such as a gravity 

field, and demonstrate that a particular type of wave motion, in which pressure remains constant 

in each fluid parcel, is supported by inhomogeneous fluids occupying bounded or unbounded 

domains.  We present elementary, exact solutions of linearized hydrodynamics equations, which 

describe the new type of waves in the coupled ocean-atmosphere system. The solutions provide 

an extension of surface gravity waves in an incompressible fluid half-space with a free boundary 

to waves in compressible, three-dimensionally inhomogeneous, rotating fluids.   

 

Waves in compressible fluids subject to external potential forces are encountered in many 

physical systems, ranging from trapped quantum gases [1–4] to stars and planet atmospheres [5, 

6]. Rather detailed studies have been done in the geophysical context, where external forces are 

due to the Earth’s gravity field. In the ocean and atmosphere, mechanical waves occur at scales 

from less than a centimeter to thousands of kilometers [7–9], play a key role in the transfer of 

energy and momentum within and between the ocean and the atmosphere [7, 8, 10], and to a 

large degree control the weather and climate [11–13]. Exact solutions of idealized hydrodynamic 

problems, known as the Rossby, Kelvin, Lamb, and Poincaré waves, elucidate the effects of the 

fluid’s buoyancy and compressibility, the Earth’s rotation, as well as topography and bathymetry, 
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on the wave processes, and provide much of the conceptual foundation of modern geophysical 

fluid dynamics [7–10, 14]. However, these solutions do not encompass the actual diversity of 

wave motions. An additional, distinct wave type is discussed in this paper. Here we present new, 

elementary, exact solutions of linearized hydrodynamics equations in a compressible fluid in a 

uniform gravity field. The solutions describe waves, in which pressure remains constant in each 

moving fluid parcel, in three-dimensionally inhomogeneous fluids in bounded or unbounded 

domains with or without rotation. In addition to the Earth’s atmosphere and oceans, the 

incompressible wave motion is likely to be a component of wave fields in the atmosphere and 

interior of stars [5, 6], as well as in planetary atmospheres and, on smaller scales, in trapped 

gases [1–4]. Identification of the new wave type advances physical intuition about acoustic-

gravity waves and the dynamics of the coupled ocean-atmosphere system and furnishes new 

benchmark problems to verify numerical models of geophysical fluid dynamics. 

Consider continuous small-amplitude waves in a fluid with background (i.e., unperturbed 

by waves) pressure p0 and density ρ0 in a uniform gravity field with acceleration g. The fluid is 

stationary and motionless in the absence of waves, and the background pressure and density are 

related by 0 0 .p ρ∇ = g  Linearization of the Euler, continuity, and state equations with respect to 

wave amplitude leads to the following set of equations [15, 16] governing wave fields:  

 ( ) ( )2 2
0 0 0 0 0,p c p pω ρ ρ −∇ − + ⋅∇ − + ⋅∇ =w w g w g  (1) 

 ( ) 2
0 0 0 0,p p cρ∇ ⋅ + + ⋅ ∇ =w w  (2) 

where p and w are the pressure perturbation and fluid particle displacement due to the wave, ω is 

wave frequency, and c0 is the sound speed. Fluid velocity v = –iωw. Time dependence exp(–iωt) 

of the wave field is assumed and suppressed. In Eqs. (1) and (2), we assume wave propagation to 

be an adiabatic thermodynamic process and disregard irreversible processes associated with 
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viscosity, thermal conductivity, and diffusion of admixtures such as salt in sea water and water 

vapor in atmospheric air. This is the standard framework for analysis of acoustic-gravity waves 

in ocean and atmosphere [7–9, 14].  

The governing equations (1) and (2) are supplemented by boundary conditions. On a 

fluid-fluid interface, the linearized boundary conditions [15, 16] consist in continuity of the 

normal displacement and the quantity 0.p p+ ⋅∇w  The latter has the meaning of the Lagrangian 

pressure perturbation, i.e., the pressure perturbation in a moving fluid particle, as opposed to the 

Eulerian pressure perturbation p at a fixed point in space. Only one boundary condition is 

imposed on a free surface:   

 0 0.p p+ ⋅∇ =w  (3) 

The physical meaning of the boundary condition (3) is that the total pressure remains constant in 

the fluid particles located on the free surface [16]. 

Without making any additional assumptions about the propagation medium, let us 

consider a special kind of fluid motion, in which there are no pressure perturbations in any fluid 

particles, i.e., Eq. (3) holds throughout the fluid. For waves of this kind, conditions on free 

boundaries, if any, are met automatically. At fluid-fluid interfaces, only the kinematic condition 

of the normal displacement continuity needs to be imposed. The governing equations (1) and (2) 

become  

 ( )2
0 0 0, 0.p pω ρ∇ − + ⋅ ∇ ∇ = ∇ ⋅ =w w w  (4) 

According to Eq. (4), divergence of the particle displacement and, hence, velocity, equals zero, 

i.e., we are dealing with an incompressible motion of a compressible fluid. This, of course, is 

expected as there are no pressure changes in fluid particles.  
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Introduce a Cartesian coordinate system with horizontal coordinates x and y and vertical 

coordinate z increasing upward. Then g = (0, 0, –g). Application of the differential operator curl 

to both sides of the static equilibrium equation 0 0p ρ∇ = g  shows that the background density is 

horizontally stratified: ρ = ρ(z), while the sound speed c can be a function of x, y, and z. From 

Eqs. (3) and (4) we find  

 ( ) ( ) ( )1
0 3 1 2 3 3, , ,0 , , exp ,h hp gw w w k w w W x y kzρ −= ≡ = ∇ =w  (5) 

where ( ) 2, ,0 ,h x y k gω∇ = ∂ ∂ ∂ ∂ =  and W is a solution of the two-dimensional (2-D) 

Helmholtz equation:  

 2 2 2 2 2 0.W x W y k W∂ ∂ + ∂ ∂ + =  (6) 

Note that the fluid motion described by Eq. (5) is irrotational, with ip ρω−  being the 

velocity potential. Lamb8 considered linear acoustic-gravity waves in a vertically stratified 

perfect gas and concluded, erroneously, that irrotational motion is impossible unless 

( )2
0 1 ,dc dz gγ= − − where γ is the constant ratio of specific heats (see pp. 547–548 in Ref. 14). 

Lamb failed to recognize that a trivial solution of his Eq. (11) can correspond to a non-trivial 

wave motion, i.e., that a non-trivial wave motion can be simultaneously irrotational (curl w = 0) 

and incompressible (∇∙w = 0). It is straightforward to check that our solution (5) satisfies Lamb’s 

Eq. (11) with arbitrary stratification of the sound speed. Using the terminology employed in the 

theory of mechanical waves in elastic media (i.e., solids), the wave (5) corresponds to the 

deformation of pure shear in the medium, and the wave should be called a “shear wave.” The 

“shear wave” (5) exists despite the absence of shear rigidity in the inviscid fluids we consider. 

Instead, the restoring force is provided by the gravity. 
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The sound speed does not enter Eqs. (5) and (6), and the density can be an arbitrary 

piecewise continuous function of z. This should be compared to the other known analytic 

solution for acoustic-gravity waves in inhomogeneous fluids, the Lamb wave, which assumes 

constant sound speed and exponential stratification of the density [7, 14].  

Horizontal and vertical components of the displacement w (5) share the same exponential 

dependence on the vertical coordinate. Despite the exponential increase in the displacement 

amplitude with z, the pressure (5) as well as the power flux pv and wave energy densities [16] 

decrease with z when ρ0 decreases with z sufficiently rapidly. The solution (5), (6) applies 

equally to unbounded fluid as well as to fluid limited from above and/or from below by pressure-

release surface(s). In a fluid with piecewise continuous parameters and horizontal (in the absence 

of the wave) interfaces, horizontal wh and vertical w3 components of the particle displacement 

are continuous and still given by Eq. (5); pressure perturbations p are discontinuous at interfaces 

where density is discontinuous (Fig. 1). According to Eq. (5), surfaces of constant pressure 

coincide with surfaces of constant density in the wave. It should be emphasized that, as follows 

from Eqs. (3) and (5), waves with no pressure variations in fluid particles do not exist when a 

medium has a horizontal boundary other than a free surface. 

Equation (6) is satisfied by a superposition of 2-D plane waves ( ) ( ), exp ,W x y i= ⋅q r   

( )cos ,sin ,0k ϕ ϕ=q  with arbitrary angular spectrum. In addition to homogeneous plane waves, 

for which the horizontal wave vector q is real, Eq. (6) is satisfied by inhomogeneous plane waves, 

for which q = qr + iqi has the real qr and imaginary qi parts. Dispersion relations for 

homogeneous and inhomogeneous plane waves are, respectively, 2gq ω= and 

 2 2 20, .r i r iq q k⋅ = − =q q  (7) 
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In plane waves, wh = k–1(iqr – qi)w3. Hence, particles move along circles, which lie in planes 

parallel to qr and making an angle arctan(qi /k) with the vertical plane; radii of the circles 

increase exponentially with z (Fig. 2). Horizontal displacements along qi are in phase, and those 

along the perpendicular direction qr are a quarter-period out of phase with the vertical 

displacement, while the Eulerian pressure variations p are always in phase with w3. In a 

particular case, when W is a plane wave and fluid with the sound speed c →∞ occupies half-

space z < 0 with a pressure-release boundary, Eq. (5) reduces to the known solution (see Sec. 

40.1 in Ref. 9) for surface gravity waves in a stratified incompressible fluid.  

When fluid occupies a bounded domain, vertical boundaries and interfaces have no effect 

on the vertical distribution of the field and impose conditions only on the function W(x, y), which 

is a solution of Eq. (6). A number of boundary-value problems for Eq. (6) have been considered 

in the literature in an acoustic context [16] as well as in the context of gravity waves in 

incompressible fluid [8], including reflection from boundaries and interfaces as well as guided 

propagation in the horizontal plane. Explicit solutions of the boundary-value problem can be 

readily found for various types of boundary conditions and for various geometries (in the 

horizontal plane) of the boundaries and/or interfaces. 

Consider waves in a fluid half-space y < z tanθ with a plane rigid boundary 

tan , 0 2y z θ θ π= < <  (Fig. 3). The vertical extent of the fluid can be either infinite or 

bounded from above (and/or from below) by a horizontal free surface. Since the normal 

displacement of fluid particles vanishes on a rigid surface, we have w2 = w3 tanθ at the boundary. 

Solving this Eqs. (5) and (6), we find  

 ( ) ( ) ( ) ( )1 2, exp cos exp cos exp tan ,W x y B ikx B ikx kyθ θ θ= + −⎡ ⎤⎣ ⎦  (8) 
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where B1, 2 are arbitrary constants. Equations (5) and (8) give the particle displacement w as a 

superposition of two inhomogeneous, three-dimensional plane waves, which propagate 

horizontally with the phase speed ( )cosg ω θ  and the group speed ( )2 cosg ω θ  in directions 

parallel to the sloping boundary. The relation between the real part of the horizontal wave vector 

and frequency is given by 2 cosrgqω θ=  in agreement with Eq. (7). The amplitude of the 

displacement vector (and of the vertical displacement w3) decreases exponentially, when an 

observation point moves downward parallel to the boundary, and remains constant, when the 

observation point moves in the direction normal to the boundary. The spatial distribution of 

pressure p (5) depends on the density stratification and generally is not a superposition of two 

three-dimensional plane waves. In every horizontal plane, we have two plane waves propagating 

along the boundary and exponentially attenuating with distance from the boundary. 

Note that in a fluid with a sloping boundary, unlike unbounded fluid or fluid with a 

vertical boundary, the waves (5) cannot propagate in an arbitrary horizontal direction. In an 

incompressible fluid of constant density with a horizontal free surface, our result (5), (8) reduces 

to Stokes’ solution for an edge wave along a sloping beach [17]. 

 Now, consider waves in a compressible fluid rotating along a vertical axis with angular 

velocity Ω = (0, 0, f/2). f is referred to as the Coriolis parameter. To account for the Coriolis 

force acting on moving fluid particles in a rotating reference frame, the term 2iω− Ω × w  should 

be added in the left side of Eq. (1). Then, for waves in which there are no Lagrangian pressure 

perturbations, from Eqs. (1)–(3) we find  

 ( )
( ) ( ) ( )0 3 32 2

exp 2, , , exp ,
1h h h

kz ip gw W W w W x y kz
k f

ρ
ωω

⎛ ⎞= = ∇ − Ω × ∇ =⎜ ⎟− ⎝ ⎠
w  (9) 
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where W(x, y) is a solution of the Helmholtz equation (6) with k2 replaced by k2(1–f 2/ω2). It is 

satisfied by an arbitrary superposition of homogeneous and inhomogeneous, 2-D plane waves 

( )exp i ⋅q r  provided  

 ( )2 2 2 2 2 20, .r i r iq q f gω ω⋅ = − = −q q  (10) 

Real and imaginary parts of the wave vector (and, hence, the directions of the fastest variations 

of wave amplitude and phase in the horizontal plane) are orthogonal. Homogeneous plane waves 

() exist only when wave frequency exceeds the Coriolis parameter. Phase and group velocities of 

the wave are parallel to the horizontal wave vector q and have magnitudes 2 2
phc g fω= −  

and ( )2 2 2 22 ,grc g f fω ω= − −  respectively. When frequency increases from |f| to infinity, 

the phase speed steadily decreases from infinity to zero; the group speed tends to zero, when 

frequency tends to f or infinity, and has a maximum 3/22grc g f−= at 3 2.fω = Unlike the 

homogeneous plane waves, the inhomogeneous waves exist at all frequencies. At ω > |f|, the 

phase speed of the inhomogeneous waves is smaller than that of the homogeneous waves. 

When f ≠ 0, according to Eq. (9), motion in the wave remains incompressible ( )0∇ ⋅ =w  

but is no longer irrotational. In particular, the vertical component of the vorticity vector curlv is –

ikfw3. Equation (9) shows that the effects of fluid rotation on wave motion become negligible at 

frequencies ω >> | f |, as expected.  

Let a fluid occupy a half-space y < 0 with a rigid vertical boundary at y = 0. For a plane 

wave W(x, y) = exp(iq1x + iq2y) that satisfies the boundary condition at y = 0, according to Eq. 

(9) we have 1
2 1q i fqω−= . Of physical interest are waves that remain finite in each horizontal 

plane. From Eqs. (9) and (10) we find the only solution of this kind:  
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 ( )3 const . exp sgn .w ikx f k f y kzω= − + +  (11) 

It describes a boundary (edge) wave that propagates along the vertical rigid wall in a direction 

that is determined uniquely by the geometry of the wall and the direction of rotation. A change of 

sign of the Coriolis parameter f (as occurs when moving from the Northern to the Southern 

Hemisphere) reverses the direction of propagation of the edge wave along the Ox axis. Note also 

that the edge wave propagates in opposite directions along western and eastern walls. The phase 

speed of the edge wave is independent of f and equals the phase speed of the free wave in the 

absence of vertical boundaries and rotation. 

In many respects (such as dependence of the direction of propagation on the sign of the 

Coriolis parameter and geometry of the boundary, and the relation between the phase speeds of 

the edge and a respective free wave), the edge wave (11) is similar to the Kelvin waves. The 

Kelvin wave is an edge (boundary) wave propagating along a vertical rigid wall in shallow water 

(i.e., in a finite layer of incompressible fluid of constant density between horizontal free and rigid 

boundaries) [8]. The edge wave (11) is a “deep-water” counterpart of the Kelvin wave. It is 

unaffected by fluid compressibility, density stratification, and presence of horizontal free 

surface(s). 

 Consider a fluid half-space y < z tanθ with a plane rigid boundary (Fig. 3). The vertical 

extent of the fluid can be either infinite or bounded from above (and/or from below) by a 

horizontal free surface. For a plane-wave solution W(x, y) = exp(iq1x + iq2y) that satisfies the 

condition w2 = w3 tanθ on the boundary, from Eqs. (9) and (10), we find  

 1 21 sin , sin .
cos cos

k f ik fq qθ θ
θ ω θ ω

−⎛ ⎞ ⎛ ⎞= ± − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∓  (12) 
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The dispersion equation of the edge waves (12) can be written as cos sin .rgq fθ ω ω θ= ∓  For 

the wave amplitude to remain finite in the horizontal plane, there should be Im q2 ≤ 0. When | f | 

< ω sin θ, both solutions (12) satisfy this requirement, and we have two distinct edge waves, 

which, as in the case of the sloping rigid boundary in a non-rotating fluid, propagate along the 

Ox coordinate axis in opposite directions along the boundary. When | f | > ω sin θ, only one of 

horizontal wave vectors (12), namely,  

 1 2
sgn 1 sin , sin ,
cos cos

f fk f ikq qθ θ
θ ω θ ω

⎛ ⎞ ⎛ ⎞−= − + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (13) 

satisfies the inequality Im q2 ≤ 0. Then, there exists only one edge wave, with its direction of 

propagation determined by the direction of the fluid rotation. This is similar to what was found in 

the case of a vertical rigid wall in rotating fluid. In fact, at θ → 0, the solution described by Eq. 

(13) reduces to the solution (11) we obtained for the vertical wall.  

In summary, incompressible wave motion, in which pressure and density remain constant 

in each moving fluid parcel, is found to be supported by inhomogeneous compressible fluids 

occupying either unbounded domains or domains with horizontal pressure-release surfaces and 

sloping rigid boundaries. Gravity is the restoring force in the incompressible wave motion. The 

waves are described by simple, exact solutions of linearized equations of hydrodynamics of 

inhomogeneous, compressible fluid in a uniform gravity field. The exact solutions are valid 

under surprisingly general assumptions about the environment and reduce to some classical wave 

types in appropriate limiting cases. Allowance for three-dimensional variation of the sound speed 

and for arbitrary density stratification, including density discontinuities, makes the exact 

solutions an attractive model of waves in a coupled ocean-atmosphere system. 
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Similar to the other analytical solutions employed in geophysical hydrodynamics such as 

the Rossby, Kelvin, Lamb, Poincaré, and Stokes waves, the body and edge waves described by 

Eqs. (5), (8), (9), and (12) are exact solutions of idealized problems, which only approximately 

represent the real ocean and atmosphere. Further research is required to investigate the effects of 

dissipation, nonlinearity, finite ocean depth, background currents and winds, variation of the 

Coriolis parameter, etc. on the waves discussed in this paper.  

________________________ 
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Figure Captions 

FIG. 1. (Color online) Vertical profiles of the background density ρ and amplitudes of wave-

induced perturbations in the Eulerian pressure p and the vertical displacement w3 of fluid parcels. 

FIG. 2. (Color online) Surfaces of constant pressure and constant density in a homogeneous 

plane wave propagating along the x axis (solid lines) and in the absence of waves (dashed lines). 

Also shown are circular trajectories of fluid particles and the vector of their velocity at different 

phases of the wave. Large arrow shows the direction of wave propagation. 

FIG. 3. (Color online) Sketch showing geometry of the edge wave problem. Arrow 1 shows the 

direction of propagation of an edge wave which exists at any frequency and for the arbitrary 

slope of the plane rigid surface. Arrow 2 shows the direction of propagation of an additional 

edge wave, which exists at ω > | f | sinθ in a rotating fluid and at any frequency in a non-rotating 

(f = 0) fluid. The propagation directions are shown for the Northern Hemisphere (f > 0) and are 

reversed in the Southern Hemisphere. Arrow 3 shows the direction of the exponential decrease of 

the amplitude of the fluid velocity. All three arrows are parallel to the rigid boundary. 
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