
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Loss-Induced Omnidirectional Bending to the Normal in ϵ-
Near-Zero Metamaterials

Simin Feng
Phys. Rev. Lett. 108, 193904 — Published 10 May 2012

DOI: 10.1103/PhysRevLett.108.193904

http://dx.doi.org/10.1103/PhysRevLett.108.193904


LL13545

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Loss-Induced Omnidirectional Bending to the Normal in ǫ-near-Zero Metamaterials

Simin Feng1, ∗

1Michelson Lab, Physics Division, Naval Air Warfare Center, China Lake, California 93555

Contrary to conventional wisdom that light bends away from the normal when it passes from high to low
refractive index media, here we demonstrate an exotic phenomenon that the direction of electromagnetic power
can bend towards the normal when light is incident from an arbitrary high refractive index medium (or air) to
ǫ-near-zero (ENZ) metamaterial. Moreover, the direction ofthe transmission is close to the normal for all angles
of incidence. This anti-Snell’s law refraction is resultedfrom the interplay between ENZ and material loss. The
loss can increase the transmission at the air-ENZ interfaceand collimate the beam inside the ENZ medium.
Furthermore, in an ideal loss configuration, the propagation loss in anisotropic ENZ materials can approach
zero when the material loss goes to infinity.

PACS numbers: 42.25.Bs, 42.79.Wc, 78.67.Pt

Bending of light towards the normal when it passes from
low to high refractive index media is one of the fundamental
phenomena in optics. As a manifestation of this phenomenon,
directive emission into air by a source inside the material with
vanishingly small permittivity, known asǫ-near-zero (ENZ)
metamaterials, was demonstrated recently [1]. ENZ materials
have gained prominence as useful components to guide light
and alter radiations [2–6]. Previous studies on ENZ-directive
emission have been focused on the radiation from low (ǫ ≈ 0)
to high (air) refractive index media [1, 7–11], where the di-
rective transmission can be understood from Snell’s law that
dictates the light bending to the normal. From the reciprocal
theorem, for the radiation from high to low refractive index
media, the transmitted beam should spread out in grazing an-
gles as the result of bending away from the normal. Contrary
to this conventional behavior, in this paper we will show that
the electromagnetic (EM) power can bend towards the normal
when passing from arbitrary high (ǫ1 ≫ 1) to low (ǫ2 ≈ 0)
refractive index media as shown in Fig. 1a – anti-Snell’s law
refraction. Moreover, the direction of the transmission isclose
to the normal for all angles of incidence. Unlike negative
refraction [12], this anti-Snell’s law refraction is induced by
material loss. The interplay between ENZ and loss leads to
unusual wave interaction. This phenomenon is fundamentally
different from the spatial filter effect previously studiedin the
lossless ENZ slab [11] which, in the limit ofǫ = 0, allows
zero spatial frequency (normal incidence) for total transmis-
sion, but reflects oblique incidences. EM properties in lossy
ENZ media are unconventional and counterintuitive. Material
loss can switch a broadband reflection to a broadband trans-
mission, and then bend all spatial components to the normal.
Moreover, the transmission at the air-ENZ interface increases
with the loss. Interestingly, for a certain ideal loss design, the
collimated beam can propagate indefinitely in the anisotropic
ENZ medium when the loss approaches infinity.

This refraction and propagation anomaly may be useful for
projecting EM power into one direction as shown in Fig. 1b,
where the waves from all directions bend to the normal upon
entering the ENZ material. A plasmonic thin-film is super-
imposed on the ENZ medium to enhance the transmission
through structural resonances. Regardless of the incidence

angles, the transmitted powers can impinge normally to the
receptors or photocells embedded in the ENZ medium, which
increase the acceptance angle and energy transfer.

FIG. 1. (Color online) (a) A plane wave is incident from arbitrary
high permittivity (ǫ1 ≫ 1) medium to ENZ (ǫ2 ≈ 0) metamaterial.
(b) Incoming waves in air from different directions all bendto the
normal upon entering the ENZ medium. A nanoplasmonic thin film
is superimposed on the ENZ material to enhance the transmission.
Receptors or photocells are embedded in the ENZ metamaterial.

Our derivation is based on anisotropic media. The results
can be applied to isotropic materials. Assuming a harmonic
time dependence exp(−iωt) for the EM field, from Maxwell’s
equations, we have

∇ × ( ¯̄µ−1
n · ∇ ×E

)

= k2
0
(¯̄ǫn ·E

)

,

∇ × (¯̄ǫ−1
n · ∇ ×H

)

= k2
0
( ¯̄µn ·H

)

,
(1)

where k0 = ω/c; and the¯̄ǫn and ¯̄µn are, respectively, the
permittivity and permeability tensors for each uniform re-
gion (n = 1, 2, · · · ), which in the principal coordinates can
be described bȳ̄ǫn = ǫnxx̂x̂ + ǫnyŷŷ + ǫnzẑẑ and ¯̄µn =

µnxx̂x̂ + µnyŷŷ + µnzẑẑ, respectively. Consider transverse
magnetic (TM) modes, corresponding to non-zero field com-
ponentsHy, Ex, andEz. The magnetic fieldHy satisfies the
following wave equation:

1
ǫz

∂2Hy

∂x2
+

1
ǫx

∂2Hy

∂z2
+ k2

0µyHy = 0 , (2)

which permits solutions of the formψ(z) exp(iβx). Here the
transverse wave numberβ is determined by the incident wave,
and is conserved across the interface of different regions,

β2
= k2

0ǫnzµny − α2
n
ǫnz

ǫnx
, (n = 1, 2, · · · ) , (3)
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whereαn is the wave number in thez direction. The func-
tional form ofψ(z) is either a simple exponential exp(iαnz) for
the semi-infinite regions or a superposition of cos(αnz) and
sin(αnz) terms for the bounded regions along thez direction.
The other two componentsEx andEz can be solved fromHy

using Maxwell’s equations. By matching boundary conditions
at the interfaces, i.e., the continuity ofHy andEx, the EM field
can be derived in each region; and then the Poynting vectorS

can be computed fromS = ℜ(E ×H∗). In anisotropic ma-
terials, the direction of the Poynting vector is different from
that of the phase front of the field. Here, only the direction
of the Poynting vector is considered since it is associated with
the energy transport. The angle (θS ) of the Poynting vector is
measured from the Poynting vector to the surface normal, and
is given byθS = tan−1(S x/S z). In Fig. 1a, the input medium
is isotropic material with permittivityǫ1; the output medium
is ENZ material (ǫ2 ≈ 0). In the following, both anisotropic
(ǫ2x , ǫ2z) and isotropic (ǫ2x = ǫ2z) ENZ materials will be
considered. Figure 2 illustrates the effect of loss of the ENZ-
materials on the transmission angle (TA) plotted against angle
of incidence (AOI) with and without loss for different permit-
tivity (ǫ1) of the input medium. In the top panels, when the
loss is zero

(ℑ(ǫ2z) = 0
)

, the TA is 90 degree (grazing angle)
except for the normal incidence. This behavior is complied
with Snell’s law. In the bottom panels, with a moderate loss
ℑ(ǫ2z) = 0.6, the TA switches to the near zero (the normal
direction) for all AOI. This switching phenomenon persists
even for the much higher permittivity (ǫ1 = 100) of the input
medium (middle and right panels).
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FIG. 2. (Color online) TA of the Poynting vector versus AOI when
ǫ2z = 0.001+ iǫi

2z. Left and middle panels: anisotropic ENZ material
with ǫ2x = 1. Right panels: isotropic ENZ material withǫ2x = ǫ2z.
Top panels:ǫi

2z = 0. Bottom panels:ǫi
2z = 0.6. Left panels:ǫ1 = 1.

Middle and right panels:ǫ1 = 100. A good agreement between the
numerical (blue-solid) and analytical (green-circles) results. Material
loss switches the TA from the grazing angle 90◦ (top panels) to the
near-zero angle (bottom panels) for all AOI.

To understand this loss-induced switching behavior, let’s

analyze the transmission angle (θS ), which is given by

tan(θS ) =
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, (4)

whereβ̄ ≡ β/k0, andβ̄ (real) is determined by the incidence
angle. The transmission angle of the Poynting vector depends
only on the input and output media. In the case ofǫ2x → 0 and
ǫ2z finite, Eq. (4) indicatesθS → 0◦ (normal direction). For the
case ofǫ2z → 0 andǫ2x finite and the case of isotropic ENZ
material withǫ2x = ǫ2z → 0, the analysis is more involved.
The numerator of Eq. (4) can be written as

ℜ
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)
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whereǫr
2z ≡ ℜ(ǫ2z). Assumingµ2y is real, the denominator of

Eq. (4) becomes
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where
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whereǫi
2z ≡ ℑ(ǫ2z), ǫr

2x ≡ ℜ(ǫ2x), ǫi
2x ≡ ℑ(ǫ2x), and

A ≡
|ǫ2z|2µ2y
(

β̄
)2

, B =
√

|ǫ2z|2 − 2Aǫr
2z + A2 . (8)

Thus, the transmission angle (θS ) becomes

tan(θS ) =
|ǫ2x|ǫr

2z

a |ǫ2z|
. (9)

The loss-induced angular switch observed in Fig. 2 can be
explained from Eq. (9). For the anisotropic mediumǫ2x , ǫ2z

and ǫ2x is finite, if ǫi
2z = 0, whenǫr

2z → 0, ǫr
2z/|ǫ2z| → 1

and a → 0, thusθS → 90◦. If ǫi
2z , 0, whenǫr

2z → 0,
ǫr
2z/|ǫ2z| → 0 anda is finite, thusθS → 0◦. On the other hand,

if ǫ2z is finite, whenǫ2x → 0, a → √
ǫ2x, thusθS → 0◦. For

the isotropic case, letǫ2x = ǫ2z ≡ ǫr
2 + iǫi

2. If ǫi
2 = 0, when

ǫr
2 → 0, ǫr

2z/|ǫ2z| → 1 anda → (ǫr
2)3/2, thusθS → 90◦. If

ǫi
2 , 0, whenǫr

2 → 0, ǫr
2z/|ǫ2z| → 0 anda is finite, therefore

θS → 0◦. Equation (9) indicates whenǫ2z is finite, both the
real and imaginary ofǫ2x should approach zero in order for
θS → 0◦. To validate Eq. (9), in Fig. 2 the TAs calculated
from Eq. (9) (green-circles) are compared to those computed
numerically (blue-solid), showing a perfect agreement.

A detailed investigation on the influence of the loss on the
TA is presented in Supplemental Material [13]. In essence, the
TA decreases with increasing the lossℑ(ǫ2z) and decreasing
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theℜ(ǫ2z). When theℜ(ǫ2z) → 0, the angular width of the
transmission can be estimated from
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, (10)

whereη ≡
|ǫz|µy

ǫ1µ1
, and the subscript 2 in theǫx, ǫz, andµy was

omitted in above equation.
Not only can the loss omni-directionally switch the TA

from the grazing to the normal, but also it can increase the
transmission amplitude. Without loss, the huge mismatched
impedance prevents EM waves from entering the medium.
This picture changes dramatically with the loss. In fact, loss
can mitigate the mismatch, thus increases the transmission.
Figure 3 shows the transmittance of a plane wave incident
from air to the ENZ medium. Clearly, material loss provides
a mechanism for the EM power to enter the “door”, switching
a broadband reflection to a broadband transmission.

FIG. 3. (Color online) Transmittance at the air-ENZ interface vs.
AOI and loss. Left panel:ℜ(ǫ2z) = 0.001 andǫ2x = 1. Right panel:
ǫ2x = ǫ2z = ǫ2 andℜ(ǫ2) = 0.001. Color bars represent the magnitude
of the transmittance. Note the transmission is zero whenℑ(ǫ2z) = 0.

Moreover, some material loss can increase the propagation
distance in anisotropic ENZ materials. Note the propagation
constant in thez-direction, from Eq. (3), is given by

kz ≡ α =
√

k2
0ǫxµy −

ǫx

ǫz
β 2 . (11)

For the fixedǫx, a higher loss inǫz means a smallerℑ(kz), and
thus a longer propagation for oblique incident beams since
waves propagate mostly along thez-direction once inside the
ENZ medium. Thus, if the loss inǫx can be kept small, than
the loss inǫz is, in fact, favored for propagation. As|ǫz| → ∞,
ℑ(kz) →

√

(|ǫx| − ǫr
x
)

/2 [14]. The attenuation is limited by
the ℑ(ǫx). Figure 4 shows the influence of loss on propa-
gation. Left panels present the normalized transmission vs.
AOI at different propagation distances inside the anisotropic
ENZ medium with different lossℑ(ǫz). The left-bottom panel
indicates the transmission increases with the increase of the
lossℑ(ǫ2z) and is eventually saturated (the curves forǫ2z = 3

FIG. 4. (Color online) Left panels: Normalized transmittedpower
(by the input power for each AOI) inside the ENZ medium vs. AOI
at the air-ENZ interface (z = 0, bottom panel), at the propagation
distancez = λ (middle panel) andz = 5λ (top panel). Blue solid:
ℑ(ǫ2z) = 0.6. Green dashed:ℑ(ǫ2z) = 3. Red dots:ℑ(ǫ2z) = 20.
ℜ(ǫ2z) = 0.001 andǫ2x = 1. No propagation decay for the normal
incidence sinceβ = 0 in Eq. (11). Right panels: Propagation of the
normalized total power (integrating over AOI) in the ENZ medium.
Top panel:ℑ(ǫ2z) = 20. Bottom panel:ℑ(ǫ2z) = 0.6.

andǫ2z = 20 are on top of each other). A broadband spatial
frequency can enter the ENZ medium with more than 90%
transmission for an angular bandwidth up to 50 degree and
more than 50% for up to 75 degree. As the wave propagates
inside the anisotropic ENZ medium, the power coming from
non-zero AOI is gradually absorbed except for the normal in-
cidence (see left-middle and left-top panels). This process
is in fact quite opposite to what occurs in the lossless ENZ
slab which, in the limit ofǫ = 0, only allows the normal spa-
tial component for total transmission due to Fabry-Perot res-
onance [11]. A lossless ENZ slab acts as a spatial filter [11],
not a collimator. Whereas a lossy air-ENZ interface behaves
as a collimator since most spatial components can pass the
interface almost in parallel. Ideally, the wave can propagate
indefinitely without decay if the lossℑ(ǫz) → ∞ and the loss
ℑ(ǫx) = 0. Physically, it can be understood thatǫz is impor-
tant for matching at the interface, but once the wave enters the
material it propagates mostly along the normal, so the elec-
tric field ’feels’ only thex-component of the permittivity. In
essence, when the|ǫz| increases, the impact of theǫz on wave
propagation diminishes as the result of decreasing TA [14].
Propagation of the normalized total power in the ENZ medium
is shown on the right panels of Fig. 4. Whenℑ(ǫ2z) = 20
(top panel), about 60% power is remained after a propaga-
tion of 5λ. For practical implementation, ENZ slab is more
useful. In the anisotropic ENZ material, thez-component of
the wave-vector, which is given by Eq. (11), isnot zero when
ǫx , 0. Reflection from the second boundary of the ENZ slab
can introduce interference and Fabry-Pérot effects. Hence, it
is important to understand the behavior of output power of the
anisotropic lossy ENZ slab (see Supplemental Material [15]).
Note that the flat wavefront occurs only inside the ENZ ma-
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terial. When the power comes out of the medium into air, the
wavefront will return to the original form due to the conserva-
tion of parallel wave vectorβ. This result is different from the
lossless ENZ slab where the wavefront keeps flat in air [11]
since in their case the tilted wavefronts can never get into the
material in the first place. It is well-known that many fasci-
nating effects diminish due to the high loss of metamaterials.
However, the material loss here can play a positive role, which
collimates the beam and increases the transmission and prop-
agation inside the ENZ medium.

Above EM properties may have many applications, such
as directive antennas. Instead of radiation, we will explore
this effect from a receiving perspective, i.e., redirect the EM
power coming from different directions to the direction of
the receivers to enhance the acquisition power, as shown in
Fig. 1b. To increase the coupling, a matching coating can
be deposited on the surface of the ENZ material such that
the effective impedance of the overall structure is matched
to that of air. For simplicity, we used a dielectric-metal-
dielectric coating. With proper thicknesses, this sandwich
structure can possess nearly-flat dispersion (omnidirectional
resonance) [16, 17] due to coupled surface plasmon from
closely spaced two dielectric-metal interfaces. By varying the
thickness of each layer, the resonant frequency can be tuned.
In our simulation, the materials of the dielectric and metallic
layers are, respectively, amorphous polycarbonate (APC) and
silver (Ag). The refractive index of the APC is given by [18]
np = 1.5567+8.0797×10−3/λ2

+3.5971×10−4/λ4, whereλ is
the wavelength inµm. The loss of the APC is very small, and
thus neglected. Absorption of Ag is included via the complex
permittivity given from Palik [19].

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

AOI (deg.)

T
,  

R

 

 

λ = 0.95 µm
d = 100 nm

T
R

0 20 40 60 80
0

0.05

0.1

0.15

0.2

ε
2x

 = 1.0

AOI (deg.)

T
A

 (
de

g.
)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

AOI (deg.)

T
,  

R

 

 

λ = 0.64 µm
d =  80 nm

T
R

0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

ε
2x

 = ε
2z

AOI (deg.)

T
A

 (
de

g.
)

FIG. 5. (Color online) Top panels: Transmittance (blue-solid) and
reflectance (green-dashed) of the APC-Ag-APC thin film vs. AOI
when the back of the film is ENZ medium withǫ2x = 1 (left panels)
and ǫ2x = ǫ2z (right panels). ǫ2z = 0.001+ 0.6i for both. Bottom
panels: corresponding transmission angle of the APC-Ag-APC film
computed numerically (blue-solid) and analytically (green-circles),
showing a perfect agreement. The thickness of Ag is 10 nm.

Figure 5 shows the transmittance and reflectance (top pan-
els) of a plane wave incident from air to the APC-Ag-APC
thin film, along with the corresponding TA (bottom panels).

At the resonance, the thickness of the APC isd = 100 nm
and the resonant wavelengthλ = 0.95µm for the anisotropic
ENZ medium (left panels); andd = 80 nm andλ = 0.64µm
for the isotropic ENZ medium (right panels). About 90%
transmission (top panels) is achieved for the AOI up to 70◦

with nearly-collimated beam in the normal direction (bottom
panels). Compared with the case without the matching film
(see left-bottom panel of Fig. 4), the angular bandwith is in-
creased by 40%. A 2D plot showing the transmittance of the
APC-Ag-APC coating as a function of AOI and wavelength is
given in Supplemental Material [20]. Note the loss of the ENZ
medium was not included when calculating the transmittance,
which was computed right after the APC-Ag-APC, i.e., before
traveling through the ENZ medium. If the receptors are em-
bedded very close to the back of the film, the propagation loss
in the ENZ medium can be minimized. On the other hand, by
designing the anisotropic loss,ℑ(ǫx) ≈ 0 andℑ(ǫz) ≫ 0, the
propagation distance can be increased.

In conclusions, we have demonstrated the counterintuitive
anti-Snell’s law refraction and the loss-assisted transmission
and propagation in ENZ materials. These results are sensi-
tive to polarization and usually narrow band due to frequency
dispersion. Nevertheless, these unconventional effects may
find applications in communications, directive antennas, de-
tectors, and sensors to increase acceptance angle and energy
deliver without using optical lenses and mechanical gimbals.
The concept of using anisotropic loss to control the direction
and transmission brings a positive perspective to materialloss
and may open up a new avenue for metamaterial designs.
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