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The first experimental demonstration of a new Pancharatnam-Berry phase for light beams
with spatially inhomogeneous, or vector, states of polarization referred to as the higher-order
Pancharatnam-Berry phase is presented. This new geometric phase is proportional to light’s to-
tal angular momentum, a sum of spin and higher dimensional orbital angular momentum, sharply
contrasting the the well known Pancharatnam-Berry phase associated with the plane wave state of
polarization of a spatially homogeneous light beam. The higher-order Pancharatnam-Berry phase
is directly related to the rotational symmetry of a vortex baring electromagnetic field, associated
with the rotational frequency shift of a light beam, and has implications in quantum information
science as well as other physical systems such as electron vortex beams.

Since its exposition by Berry in 1984 the Berry phase
[1], the phase acquired by a quantum mechanical eigen-
state undergoing a cyclic and adiabatic transformation
in its parameter space, has become a fundamental and
unifying physical concept in numerous and varying fields
[2]. This phase is referred to as a geometric phase and,
because of its explicit dependence on the geometry of its
parameter space, differs markedly from dynamic phase
being exceedingly more robust.
Berry’s result was the generalization of an earlier re-

sult by Pancharatnam in 1955 in the context of a light
beam’s plane wave state of polarization (SOP) - the
Pancharatnam-Berry phase (PBP) [3]. This is illustrated
using the corresponding parameter space of the Poincare
sphere. The Poincare sphere is the geometric represen-
tation of an arbitrary SOP by a sphere where the poles
represent right and left circular polarization, equitorial
points are linear polarization, and intermediate points
between the poles and equator are elliptical polarization
[4]. The cyclic transformation of the SOP is equivalent to
a closed loop circuit on the PS surface. Upon traversal
of the circuit the light beam returns to its initial SOP
and acquires the additional PBP which is directly pro-
portional to the area enclosed by the circuit [5]. The PBP
is now a well-established phenomenon that has been ob-
served numerous times yet its manifestation has thus far
been restricted to light beams whose SOP are spatially
homogeneous [6].
In this work the first experimental measurement of

a new Pancharatnam-Berry phase associated with light
beams with a spatially inhomogenous or vector SOP is
presented. These vector SOP are higher order solutions
of Maxwell’s equations and we refer to this new geomet-
ric phase as a higher-order PBP [7]. The higher-order
PBP is illustrated using the recently proposed higher-
order Poincare sphere representation of a vector SOP [8].
In sharp contrast to the well known PBP the higher-
order PBP is shown to be proportional to light’s total
angular momentum (AM), a sum of the spin and higher
dimensional orbital angular momentum.

In an elegant framework Berry showed a state |ψ(R)〉
undergoing a cyclic transformation over a circuit C with
respect to its parameters R acquires, upon return to
it’s intial state, an additional phase given by γ(C) =
−
∫ ∫

C dS · V(R). V(R) = ∇R × A plays the role of a
’magnetic field’ in the parameter space referred to as the
Berry curvature, A = ı 〈ψ(R)|∇Rψ(R)〉 is the associated
’vector potential’ referred to as the Berry connection, and
∇R is a gradient with respect to the parameters [1]. The
phase γ is interpreted as the flux of V through a surface
S enclosed by the a circuit C in the parameter space.
In the parameter space of the HOPS, i. e. the sphere’s
spherical coordinates θ and φ, |ψ(R)〉 is given by

|ψ(θ, ϕ)〉 = cos
(θ

2

)

|Rℓ〉 eıσϕ/2 + sin
(θ

2

)

|Lℓ〉 e−ıσϕ/2

(1)

where |Rℓ〉 = (x̂ + ıŷ) exp(ıℓϕ/2)/
√
2 and |Lℓ〉 = (x̂ −

ıŷ) exp(−ıℓϕ/2)/
√
2 are circular polarized phase vortices

represented by the poles. The azimuthal phase fac-
tor exp(±ıℓϕ/2) is the phase vortex, the optical OAM
eigenstates associated with an orbital angular momen-
tum (OAM) per photon of ℓh̄ (ℓ = 0,±1,±2, ...), ℓ is the
integer number of azimuthal phase windings about the
beam axis called the topological charge, and (x̂± ıŷ)/

√
2

is right and left circular polarization, the optical SAM
eigenstates associated with a spin angular momentum
(SAM) per photon of σh̄ (σ = ±1) [9]. For a paraxial op-
tical beam the SAM and OAM are additive with a total
angular momentum (TAM) of Jh̄ = (ℓ + σ)h̄. Eq. 1 de-
scribes a vector SOP as represented by the HOPS where
the poles are the TAM eigenstates of circular polarized
phase vortices, equitorial points are linear polarized vec-
tor vortices, and intermediate points between the poles
and equator are elliptically polarized vector vortices [8].
The factor of 1/2 in exp(±ıℓϕ/2) is a consequence of ex-
ploiting the 2 → 1 homomorphism between the physical
SU(2) space of the light beam and the topological SO(3)
space of the HOPS where a rotation of ϕ/2 about the
beam axis is equivalent to a rotation of ϕ in the equito-



2

rial plane of the HOPS.

To find the Berry phase using Eq. 1 each
component of the Berry connection A is evaluated
where ∇R = ∇(ρ, θ, ϕ) is a gradient in spherical
coordinates. The components of A are given by
Aρ = 〈ψ(θ, ϕ)|ı∂ρψ(θ, ϕ)〉 /ρ, Aθ = 〈ψ(θ, ϕ)|ı∂θψ(θ, ϕ)〉,
and Aϕ = 〈ψ(θ, ϕ)|ı∂ϕψ(θ, ϕ)〉 /ρ sin θ. Carry-
ing out the derivatives it is easily shown Aθ =
−ı cos(θ/2) sin(θ/2)/2 − ı cos(θ/2) sin(θ/2))/2 = 0 and
Aρ = 0. The remaining component Aϕ depends ex-
plicitly on ϕ due to the factor exp(±ı(ℓ + σ)ϕ/2).
Taking the derivative ı∂ϕ which resembles the optical
OAM operator [10] gives Aϕ = −(ℓ + σ)(cos2(θ/2) −
sin2(θ/2))/2ρ sin θ. The resulting Berry connection is
A = −(ℓ + σ) cos θϕ̂/2ρ sin θ. The resulting Berry cur-
vature then has only one non zero component, Vθ =
∂θ(sin θAϕ)/ρ sin θ, and is given by V = (ℓ + σ)ρ̂/ρ2.
Finally, taking dS = ρ2 sin θdρdθdϕρ̂ and evaluating the

integral of Eq. 1 where
∫ π

0

∫ π/2

0
sin θdρdθdϕ = Ω, the

higher order PBP is found to be

γ(C) = −(ℓ+ σ)Ω/2, (2)

where Ω is the surface area on the HOPS enclosed by the
circuit C. Eq. 2 shows the higher order PBP is directly
proportional to the TAM of light, a sum of light’ SAM
and OAM. This result verifies the conjecture of Eq. 15 of
[8]. For the case of ℓ = 0 the higher order PBP reduces
to the well known PBP. Berry interpreted the magnetic
field V to be that of a monopole centered at the Poincare
sphere origin [3]. The Berry curvature for the higher
order PBP is interpreted as a monopole centered at the
HOPS origin whose flux is proportional to the TAM of
light.

To experimentally introduce the higher order PBP to a
light beam a cyclic transformation on the HOPS is phys-
ically carried out. The path considered is the geodesic
triangle ABA shown in Fig. 1(e) which is a path be-
tween the poles. First, a good approximation of a circular
polarized phase vortex baring Laguerre-Gaussian (LGℓ

0
)

beam as represented by the north pole A and given by
|ψ(θ, ϕ)〉 = |Rℓ〉 is generated according to the experimen-
tal setup in Fig. 1 and shown in the first column of Fig.
2(a). To physically carry out the transformations corre-
sponding to the path ABA optical elements that trans-
form both the SAM and OAM of light are employed,
namely spin-orbit converters - SOC1 and SOC2. These
converters consist of the combination of a half wave plate
(HWP) and π-cylindrical lens (πCL) mode converter ar-
ranged in series as shown in Fig. 1(d). The beam passes
through SOC1 where it is transformed into an orthogo-
nal circular polarized phase vortex of opposite topological
charge as represented by the south pole B and given by
|ψ(θ, ϕ)〉 = |Lℓ〉 [4, 11]. The beam then passes through
SOC2 where it is transformed into the original circular
polarized phase vortex completing the path ABA and

acquiring the additional higher order PBP γ given by
|R′

ℓ〉 = |Rℓ〉 exp(ıγ). SOC 2 is rotated with respect to
SOC 1 at an angle ∆ϕ. This angle is defined as an equal
rotation of the πCL mode converter and HWP. Via the
SU(2) and SO(3) homomorphism this angle is directly
related to the surface area Ω of the HOPS enclosed by
ABA according to 2∆ϕ = Ω/2.
The resulting higher order PBP is measured interfero-

metrically using a modified Mach-Zender interferometer
as shown in Fig. 1. Misalignment of the optical elements
can introduce an overwhelming dynamic phase. This is
reduced by having the reference beam of the interferom-
eter propagate co-linearly through the converters such
that any dynamic phase will be equal and cancel [12].
The initial beam is made to be orthogonal to the ref-
erence beam, given by |ψ(θ, ϕ)〉 = |Lℓ〉, using an odd
number of reflections in the interferometer such that the
higher-order PBP of each beam will be opposite and ad-
ditive. A linear polarizer placed after SOC2 allows the
two beams to interfere producing an interferogram given
by

I ∝ (〈Rℓ|′ + 〈Lℓ|′)P̂P̂(|Rℓ〉′ + |Lℓ〉′)
∝ 1 + cos2(2ℓϕ+ 2γ + 2α) (3)

where P̂ = cosαx̂ + sinαŷ and α is the rotation of the
linear polarizer transmission axis. The interferogram de-
scribed by Eq. 3 is a ϕ-dependent fringe pattern consist-
ing of 2ℓ intensity lobes. As the term 2γ+2α is varied the
lobes will rotate. Using Eq. 1 and the SU(2) to SO(3)
homomorphism 2γ can be expressed as 2γ = (ℓ+σ)4∆ϕ.
For a constant polarizer orientation the rotation of the
lobes depends on the rotation of SOC2 and the TAM of
the light beam. When 2γ is an integer multiple m of 2π
a lobe is replaced by an adjacent lobe which is equivalent
to a fringe shift. This relationship can be expressed by

∆ϕ = mπ/2(ℓ+ σ). (4)

Interferograms corresponding to TAM J for different
combinations of OAM ℓ and SAM σ as a function of rota-
tion angle ∆φ for one fringe shiftm = 1 are shown in Fig.
2(a). The higher order PBP is measured by verifying Eq.
4. For each combination of ℓ and σ SOC2 is manually
rotated until m = 10 fringe shifts are observed and the
total ∆φ recorded. The higher m reduces error associ-
ated with ’drift’ in the interferometer. It is possible to
simultaneously measure the higher-order PBP for TAM
values of −J associated with the reference beam by inter-
preting the observed lobe rotation as −m. Experimen-
tally recorded values of ∆ϕ as a function of J = (ℓ + σ)
is plotted against Eq. 4 in Fig. 2(b) showing excellent
agreement with theory. The experiment is repeated mul-
tiple times with similar results found each time. It should
be noted that the transformations described above as well
as other transformations on the HOPS such as between
the poles and equator may also be possible using special
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optical elements such as q-plates [13] or sub-wavelength
diffraction gratings [14]. An analysis of these transfor-
mations can be carried out using the Jones matrix for-
malism for light with both SAM and OAM [15]. This is
the subject of future work .

The experimentally verified higher order PBP is
markedly different than the well known PBP because of
its dependence on light’s TAM. This result gives new
meaning to other physical phenomenon such as the ro-
tational frequency shift of a light beam which was also
shown to depend on light’s TAM [16]. For a light beam
with no OAM the rotational frequency shift has been
interpreted as an evolving PBP on the Poincare sphere
[17]. Here the rotational frequency shift for a light beam
with both SAM and OAM is interpreted as an evolving
higher order PBP on the HOPS. It is the rotational sym-
metry of a light beam’s electric field that gives rise to
the rotational frequency shift and the higher order PBP.
To illustrate this point instantaneous field distributions,
a snapshot in time, for light beams with varying J are
shown in Fig. 3. For J = 0 (ℓ = 1, σ = −1) the field has
0-fold rotational symmetry and the corresponding higher
order PBP is γ = 0. J = 2 corresponds to light beams
with (ℓ = 1, σ = 1) and (ℓ = 3, σ = −1), both have 2-
fold rotational symmetry, and both have an equal higher
order PBP of γ = −Ω. In general, light beams that are
TAM eigenstates have a J-fold rotational symmetry and
a higher order PBP that depends on the TAM J .

Though this experiment has focused on a particular
vector SOP represented by the HOPS this result can be
generalized to other vector SOP. The optical OAM eigen-
states form a complete orthogonal set and it is there-
fore possible to represent any light beam as their linear
combination called spiral harmonics where the beam is
said to have a corresponding OAM spectrum [18]. An
arbitrary vector SOP can be represented by the linear
combination of right circular and left circular polarized
spiral harmonics and the constituent components being
the TAM eigenstates of circular polarized phase vortices
each have an associated higher order PBP.

Due to its robustness and distinction from dynamic
phase the geometric phase has found novel applications
in quantum information science where for example it has
been proposed as a topological phase gate [19]. Explo-
ration of the higher-order PBP as the photonic analog
of a topological phase gate for the TAM of light in for
example the sorting of single photons [20] as well as its
use to manipulate the entanglement [21] my lead to new
applications in quantum information science where uti-
lizng the TAM of light allows photonic superdense cod-
ing [22] and vector SOPs, of which TAM eigenstates are
the constituent components, have received recent interest
because they present natural inseperable Bell states of a

photon’s SAM and OAM degrees of freedom [23].
In conclusion, a new PBP referred to as the higher-

order PBP has been theoretically and experimentally pre-
sented for the first time. The higher order PBP differs
from the well known PBP in that it depends explicitly on
the TAM of a light beam and is associated with the rota-
tional symmetry of a light beam’s electric field which is
tied to other physical phenomena such as the rotational
frequency shift of a light beam. This result has impor-
tant implications for vector SOPs and vortex beams such
as the higher order modes of optical fibers but also also
in other physical systems such as vortex baring electron
beams [24]. This is particularly interesting In the context
of a recently proposed spin-orbit conversion of a vortex
electron beam because the higher-order PBP would then
be related to a real magnetic field [25].
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FIG. 1. Experimental setup: A collimated (waist size ∼ 5
mm) and linear polarized TEM00 mode from a He-Ne laser
(632 nm, 5 mW ) is converted into a good approximation of
phase vortex baring LGℓ

0 mode using a reflective phase only
spatial light modulator (SLM) (Holoeye LC-720) displaying a
blazed fork grating which controls the OAM. A LG−ℓ

0
mode

(the reference beam) is generated by an odd number of reflec-
tions using a modified Mach-Zender interferometer comprised
of two beam splitters (BS) and one mirror (M). A HWP and
quarter wave plate (QWP), which controls the SAM, are used
to give the two beams orthogonal circular polarization. The
two beams, given by |Rℓ〉 and |Lℓ〉, pass co-linearly through
two spin-orbit converters, SOC 1 and SOC 2, comprised of a
HWP and πCL mode converter arranged in series. The πCL
mode converters consist of two CLs (f = 5mm) spaced 2f
apart. The physical transformations of the spin-orbi convert-
ers correspond to the path ABA on the HOPS. The beams
pass through a linear polarizer (P) and are imaged onto a
CCD camera producing the interferograms described by Eq.
4. SOC2 is rotated an angle ∆φ which is equivalent to a 2∆φ
equitorial rotation on the HOPS and results in a rotation of
the lobes of the interferogram. (a) Fork grating displayed on
SLM (b) Intensity of LGℓ

0 mode (c) Intensity of LG−ℓ

0
mode

(d) spin-orbit converters (e) Cylic path on HOPS (f) Rotating
interferogram.
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FIG. 2. Experimental Data. (a) Table of interferograms for
Eq. 4. Each row displays the observed interferogram lobe
rotation for one full fringe shift (m = 1) corresponding to
the phase shift 2γ in steps of π/2 for a beam with TAM
J = (ℓ + σ). The total SOC2 rotation ∆ϕ is shown. (b)
Theoretical (red) and experimental (blue) plot of Eq. 5 for
m = 10 fringe shifts. Crosses represent sgn(ℓ) = sgn(σ) and
circles represent sgn(ℓ) 6= sgn(σ). Error bars are smaller than
the markers.
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FIG. 3. Instantaneous field distributions, a snapshot in time,
for circular polarized phase vortices of TAM J = (ℓ+σ). Red
lines demarcate the field’s axis of symmetry.


