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Abstract

Gapless surface states on topological insulators are protected from elastic scattering on non-

magnetic impurities which makes them promising candidates for low-power electronic applications.

However, for wide-spread applications, these states should have to remain coherent at ambient tem-

peratures. Here, we studied temperature dependence of the electronic structure and the scattering

rates on the surface of a model topological insulator, Bi2Se3, by high resolution angle-resolved

photoemission spectroscopy. We found an extremely weak broadening of the topological surface

state with temperature and no anomalies in the state’s dispersion, indicating exceptionally weak

electron-phonon coupling. Our results demonstrate that the topological surface state is protected

not only from elastic scattering on impurities, but also from scattering on low-energy phonons,

suggesting that topological insulators could serve as a basis for room temperature electronic de-

vices.

PACS numbers: 74.25.Kc, 71.18.+y, 74.10.+v

1



Three-dimensional topological insulators (TIs) have Dirac-like surface states in which

the spin of the electron is locked perpendicular to its momentum in a chiral spin-structure

where electrons with opposite momenta have opposite spins [1–8]. A direct consequence of

the chiral spin-structure is that a backscattering, which would require a spin-flip process,

is not allowed if a time- reversal-invariant perturbation, such as non-magnetic disorder,

is present [1], making these surface states promising candidates for spintronics and quan-

tum computing applications, where the spin-coherence is crucial. [9–15]. Recent scanning

tunneling microscopy (STM) experiments [16–20] have shown that backscattering is indeed

strongly suppressed or completely absent, despite strong atomic scale disorder. Our own

angle-resolved photoemission spectroscopy (ARPES) studies have indicated that the state

is remarkably insensitive to both non-magnetic and magnetic impurities in the low doping

regime, where the Fermi surface (FS) is nearly circular. The scattering is found to increases

as the FS becomes hexagonally warped with increased doping, irrespective of the impurity’s

magnetic moment [21].

While the elastic scattering imposes the ultimate limit on the charge transport, the in-

elastic scattering processes dictate material’s transport properties at finite temperatures. In

particular, interactions of electrons with lattice modes is responsible for increasing resistivity

with temperature in metals. The same interaction may also lead to a ground states with

broken symmetries, such as superconductivity or charge-density-wave state. So far, inelastic

scattering processes at surfaces of TIs have been scarcely studied, with only one theoreti-

cal study on the coupling of the topological surface states (TSS) to phonons [22]. As the

lattice modes in general do not represent a time-reversal symmetry breaking perturbation,

it might be expected that the TSS should not couple to the q ≈ 2kF phonons. Therefore,

scattering on phonons should resemble scattering on non-magnetic impurities, where the

rates are shown to be sensitive to the Fermi surface size and shape [21]. On the other hand,

the proximity of bulk states, which in some cases could be strongly coupled to phonons

(occurrence of superconductivity upon Cu-doping in Bi2Se3 and under pressure in Bi2Te3

[23–25]), could also influence the TSS by allowing the inter-band electron-phonon scattering.

As these processes will play a crucial role in determining performances of any real devices

based on TIs, their better understanding is an imperative.

In this Letter, we present the high resolution ARPES studies of the scattering rates on

the surface of a TI, Bi2Se3. We observe a very weak temperature broadening of the TSS and
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no anomaly in the state’s dispersion due its coupling to phonons. Our results show that the

electron-phonon coupling is suppressed in a similar way as the elastic scattering, suggesting

that TIs could serve as a basis for room temperature applications.

The experiments were carried out on a Scienta SES-100 electron spectrometer at the

beamline 12.0.1 of the Advanced Light Source (ALS) and on a Scienta 2002 analyzer at

the beamline U13UB of the National Synchrotron Light Source (NSLS). The spectra were

recorded at the photon energy of 50 eV and 18.7 eV, with the combined instrumental energy

resolution of∼ 12 meV and∼ 8 meV, at ALS and NSLS, respectively. The angular resolution

was better than ±0.07◦ in both instruments. The single crystals of Bi2Se3 were synthesized

by mixing stoichiometric amounts of bismuth and selenium with trace amounts of arsenic

in evacuated quartz tubes [26]. Samples were cleaved at low temperature (15-20 K) under

ultra-high vacuum (UHV) conditions (2× 10−9 Pa). The temperature was measured using

a silicon sensor mounted near the sample.

Fig. 1 illustrates the effects of raising temperature on the electronic structure of Bi2Se3

measured in ARPES around the center of the surface Brillouin zone. The rapidly dispersing

conical state in Fig. 1b) and c) represents the TSS that forms a circular Fermi surface shown

in Fig. 1a. Its filling varies with temperature as evident from the shift of the Dirac point

from ≈ 0.27 eV below the Fermi level at 18 K to ≈ 0.23 eV at 255 K. This temperature

induced shift and the corresponding change in the Fermi surface area are fully reversible

upon temperature cycling as can be seen in panels d) to f). We note that at the pressure

of 2 × 10−9 Pa, TSS is very stable if kept at constant temperature, without noticeable

changes in the spectra several hours after cleaving. Therefore, the effects shown in Fig.

1 reflect the intrinsic temperature induced changes in the quasi-particle dynamics rather

than some spurious effects caused by adsorption/desorption of residual gases. We note that

similar shifts in binding energy of the state with temperature were observed in Shockley-

type surface states on noble metals. These shifts could be explained in the simple phase

accumulation model where the phase change on the crystal side of the potential well, that

determines the energy of the surface state, is affected by slight changes in the bulk band

gap as temperature is varied [27]. In the case of Bi2Se3, the bulk valence band (BVB) is

expected to have the dominating effect on the energy of the Dirac point. The upward shift

of the Dirac point, would indicate that the BVB also shifts up and that the bulk band gap

in Bi2Se3 decreases with increasing temperature.
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FIG. 1: Temperature effects on the ARPES spectra from Bi2Se3. (a) Fermi surface of Bi2Se3 at 18

K. (b) ARPES intensity along the ΓK line in the surface Brillouin zone at 18K and (c) at 255 K.

Photoemission intensity at the Fermi level (d) and at E = −270 meV (e) along the ΓK momentum

line as a function of temperature. (f) Photoemission intensity at the Γ point as a function of

temperature. Sample was heated from 18 K to 255 K and then cooled back to 18 K.

To quantify the changes in the spectral width of TSS, we have analyzed the photoemission

spectra at different temperatures using the standard method where the momentum distribu-

tion curves (MDCs) are fitted with Lorentzian peaks [28, 29]. The width of the Lorentzian

peak, ∆k(ω), is related to the quasiparticle scattering rate Γ(ω) = 2|ImΣ(ω)| = ∆k(ω)v0(ω),

where v0(ω) is the bare group velocity and ImΣ(ω) is the imaginary part of the complex

self-energy. Fig. 2 shows several MDCs corresponding to the spectrum from Fig. 1b) and

summarizes the results of the analysis. The spectral region above the Dirac point is very

clean: it consists of two Lorentzian-shaped peaks with essentially no background intensity,

the fact that makes the fitting procedure very accurate. The bulk conduction band is absent

as at the chosen photon energy of 50 eV, that corresponds approximately to the Z point

in the bulk Brillouin zone, it lays above the Fermi level. In contrast, the spectral region
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FIG. 2: Temperature broadening of TSS on Bi2Se3. (a) Momentum distribution curves (MDCs)

corresponding to the spectrum shown in Fig. 1(b), spaced by 50 meV, with the top curve represent-

ing the Fermi level. (b) Momentum width ∆k (bottom) and ImΣ (top) of the Lorentzian-shaped

MDC peaks at several different temperatures. Standard deviations from the fitting are within

5% of the obtained value (not shown) (c) Temperature dependence of ImΣ(0) for three different

samples (bottom), ED (middle) and doping level of TSS for sample A (top). Solid lines are the

linear fits of ImΣ(0).

below the Dirac point is always affected by the BVB. The fitting results for the region above

the Dirac point are shown in panel b). ImΣ displays a weaker energy dependence than ∆k,

reflecting an increasing group velocity as the state approaches the Fermi level. However,

the most important observation here is that ImΣ near the Fermi level shows very little

change between 18 K and 255 K. Temperature broadening of a quasi-particle peak usually

reflects an increase in the scattering on phonons and its near absence here points to a very

weak coupling of TSS to phonons in Bi2Se3. The electron-phonon coupling constant, λ,

can be determined from the temperature slope of ImΣ(0) because at higher temperatures,

approximately kBT > Ω0/3, the electron-phonon self energy

|ImΣ(ω, T )| = π
∫ ∞
0

dνα2F (ν)[2n(ν) + f(ν + ω) + f(ν − ω)] (1)

is approximately linear in temperature, ImΣ(0, T ) ≈ λπkBT . Here α2F (ω) is the Eliashberg

coupling function, f(ω) and n(ω) are the Fermi and Bose-Einstein functions, Ω0 is energy
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of the highest involved phonon and kB is Boltzmann’s constant [30]. In panel c), we plot

ImΣ averaged over -20 meV < ω < 0 as a function of temperature for three different sam-

ples. The error bars represent the standard deviation of the averaged value. Samples A

and C were measured at 50 eV, while sample B was measured at 18.7 eV photon energy.

Differences in the TSS’s width are partially due to the different momentum resolution at

these two photon energies and partially due to the natural variation in the surface ”qual-

ity”. However, in all three samples ImΣ increases with temperature at a similar rate. The

increase starts at low temperatures, indicating the involvement of low energy phonons. The

linear fits give λ = 0.076± 0.007 for sample A and 0.088± 0.009 for sample B. This repre-

sents one of the weakest coupling constants ever reported in any material, weaker than the

theoretical value from ref. [22], but in agreement with the apparent absence of temperature

broadening of TSS in recent experiments on several topological materials [31]. In contrast,

the occurrence of superconductivity upon Cu-doping in Bi2Se3 and under pressure in Bi2Te3

[23–25] suggests much stronger coupling in the bulk of these materials. The estimate for the

bulk coupling constant can be made by using the known values for Debye temperatures [32]

and superconducting transition temperatures (Tc) [23–25] in McMillan’s formula for Tc [33]:

λ = 0.62 (0.6) is obtained for CuxBi2Se3 (Bi2Te3), almost an order of magnitude stronger

than our result for the surface state.

FIG. 3: Zoom in the low-energy region of the ARPES spectrum from Bi2Se3 from Fig. 1b).

Dispersion of TSS (solid line) is obtained from positions of Lorentzian-fitted peaks in MDCs.

Another indication of the exceptionally weak electron-phonon coupling at the surface

is the apparent absence of a mass enhancement in the dispersion of TSS near the Fermi
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level. In Fig. 3 we show the low energy region of the ARPES spectrum from Fig. 1b). A

hallmark of the quasiparticle coupling to phonons in the form of a sudden change in the

slope or a ”kink” in dispersion inside the phonon-energy range [29] is conspicuously missing.

The MDC derived dispersion in Fig. 3 is essentially a straight line with no anomalies in

the vicinity of the Fermi level, in agreement with previous studies [31]. We note that the

temperature dependence from Fig. 2c) requires the involvement of low energy modes which,

in addition to the very weak coupling, makes the observation of an anomaly in dispersion

extremely difficult and it would require a much better experimental resolution. We also note

that the finite experimental resolution probably already affects the extracted values of ImΣ

at low temperatures and that λ obtained from temperature dependence might be slightly

underestimated.

Our results should have very important consequences on the macroscopic properties of

the Bi2Se3 surface, in particular on the surface state’s contribution to transport - a crucial

aspect for any (spin) electronic device based on TSS. The surface contribution to transport

has proven elusive due to the overwhelming bulk component to conductivity and/or low

surface state mobility in the environment of a typical transport measurement [34–38]. The

FIG. 4: Quasiparticle mean-free path ` (bottom) and µqp (top) as functions of temperature, de-

termined from the ARPES spectra for samples A and B from Fig. 2c). Gray regions represent the

limits of these quantities in doped surfaces [21].

determining factor for transport is the surface state mobility, which can be expressed as
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µS = e`tr/(h̄kF ) for the Dirac-like carriers. Here, `tr, represents the transport mean free

path. In ARPES experiments, kF and the quasiparticle mean-free path ` = (∆k)−1 can be

directly measured. In Fig. 4, we plot the quasiparticle mean free path and the quantity

µqp = e`/(h̄kF ), which may serve as a lower bound for surface state mobility, as functions

of temperature for samples A and B. We note that `tr might be significantly longer than

`, because currents in general are not sensitive to the small angle scattering events that

may dominate `. This discrepancy might be especially enhanced in systems in which the

backscattering is suppressed, as in the case of TSSs, and we might expect significantly higher

mobilities than µqp shown in Fig. 4. Therefore, the unperturbed and strongly coherent TSSs,

as those measured here, have a strong potential to serve as a basis for room temperature

spintronic devices. However, the environmental exposure will inevitably affect the coherence

of the topological state and degrade its mobility, in a similar way as it was demonstrated

in ref. [21]. We note that recent transport experiments have detected quantum oscillations

related to the TSS, yielding surface mobilities of around 104 cm2V−1s−1 on the surface

of Bi2Te3 [37], still low compared to those measured in suspended graphene or in the best

semiconductors [39, 40]. We suggest that controlled (ultra-high vacuum) environment and/or

an inert capping of the surface would further improve the mobilities of TSS and that such

measures might be necessary for optimal functioning of TI-based devices.

In summary, we have observed a weak electron-phonon coupling on the surface of Bi2Se3

demonstrating that TSS is well protected from scattering on low-energy phonons. This keeps

the possibility that TSSs could serve as a basis for room-temperature devices open.
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