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Abstract

We show theoretically that coherent light can be completely absorbed and transferred to sur-

face plasmons in a two-dimensional or three-dimensional metallic nanostructure by exciting it with

the time-reversed mode of the corresponding surface plasmon laser (“spaser”). The narrow-band

perfect absorption is a generalization and application of the concept of critical coupling to a nano-

cavity with surface plasmon resonances. Perfect coupling of light to nanostructures has potential

applications to nanoscale probing as well as background-free spectroscopy and ultrasensitive de-

tection or sensing.

PACS numbers: 73.20.Mf; 42.25.Bs; 42.25.Hz
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A fundamental issue in nanophotonics is the efficient delivery of light into regions with

subwavelength dimension, to enhance linear and nonlinear optical processes on the nanoscale.

This is a formidable problem because light can normally only be focused down to microscale

regions due to the diffraction limit. Various schemes have been developed to couple laser

radiation to the nanoscale, e.g. using tapered optical fibers or metal tips. Typically, only

a small fraction of the incident energy can be transferred to the local field, and the rest is

scattered as a stray background. Moreover, it is usually impossible to excite a single de-

sired mode of the nanostructure. Several recently-proposed schemes include using a tightly-

focused beam to improve the coupling of light with a nanoscale object [1, 2], spatial and/or

temporal shaping of the incident field to create subwavelength energy hot spots [3–7], and

enhancing optical absorption by matching the shape of a nanoparticle to the field structure

of a tightly focused beam [8]. While significant improvements are demonstrated in numerical

simulations, perfect coupling or absorption is not possible with these approaches. In this

paper, we propose a method for full delivery of optical energy to individual resonances of

subwavelength structures.

Our method is based on time-reversed lasing, or coherent perfect absorption (CPA), a

generalization of the concept of critical coupling to a cavity, that has recently been developed

and realized using a simple silicon cavity [9, 10]. Any bounded optical system can be

described by an electromagnetic scattering matrix, Ŝ, which satisfies, Ŝ·α = β, where α, β are

vectors of complex coefficients specifying the amplitudes of appropriate asymptotic incoming

and outgoing states of the Maxwell wave equation. A threshold for lasing corresponds to the

situation when ǫ(~r), the full permittivity of the system including the gain medium, allows

a solution with only an outgoing waves, i.e. an eigenvalue of the S-matrix tends to infinity

for some frequency, ωµ [9]. The time-reversed process to this lasing emission corresponds to

imposing the phase-conjugated lasing mode on the system and changing gain to absorption,

ǫ(~r) → ǫ∗(~r); in this case β∗ represents the incoming wave pattern and α∗ → 0, there are

no outgoing waves. Thus any system with resonances in a particular range of permittivity

and frequency, can be made to absorb perfectly a specific input electromagnetic radiation

pattern, by tuning to the lasing frequency (varying either the real part of the permittivity,

ǫ1, or the input frequency, ω) and simultaneously varying the material absorptivity (the

imaginary part of the permittivity, ǫ2) to be equal in magnitude (but opposite in sign) to

the threshold gain. We refer to such a tunable lossy cavity as a coherent perfect absorber
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(CPA).

Subwavelength dielectric cavities cannot function as CPAs simply because they do not

support resonances for wavelengths smaller than a half wavelength in the medium. How-

ever, metallic nanostructures support well-known surface plasmon resonances and indeed

recent work has demonstrated that composite metal-dielectric structures with gain can lase,

such systems being termed “spasers” (surface plasmon amplification by stimulated emission)

[11–16]. The cavity modes correspond to localized surface plasmon (LSP) resonances, which

couple to light at the surface of the cavity, producing coherent emission. The complex con-

jugate index can be achieved in a purely metallic structure, since gain is not needed and

the metal can provide the appropriate absorption; it then follows that the phase-conjugated

”spasing” mode will be perfectly absorbed as an input. We are guaranteed perfect conversion

of propagating waves from the far-field zone to the correct near-field pattern and finally to

localized surface plasmons. This perfectly efficient excitation of LSPs in metallic nanostruc-

tures is accompanied by the creation of giant local fields, which may be useful for nanoscale

linear and nonlinear optical probing and manipulation. The lack of scattered light suggests

possible applications in background-free spectroscopy and microscopy. Furthermore, we will

see that the CPA condition can be very sensitive to small changes in the environment, which

points to applications in refractive index sensing and detection of small concentrations of

target molecules.

The relationship of CPA to lasing makes it clear that it does not rely on any specific

symmetry of the “cavity”, and in its subwavelength application to plasmonic structures, it

can apply to nanoparticles of any shape or to clusters of nanoparticles, for which the CPA

is the time-reverse of a random spaser. In these general cases the time-reversed lasing mode

will be some complicated superposition of incoming cylindrical waves (2D case) or spherical

waves (3D case). Here we will illustrate the effect for nano-cylinders and nano-spheres, for

which angular momentum conservation guarantees a set of CPA resonances for each incident

multipole field, and no superposition is necessary.

Consider an infinite metallic cylinder of radius R of complex permittivity ǫ = ǫ1 + iǫ2

(refractive index n =
√
ǫ = n1+ in2) and axis along the z-direction, embedded in a dielectric

medium, of real and positive permittivity, ǫ0 (n0 =
√
ǫ0). The incident light is assumed

to propagate in the x − y plane, as does any scattered light. As noted, due to the cylin-

drical symmetry of the system, the axial component of angular momentum is conserved
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on scattering, as is the polarization. The scattering matrix is therefore diagonal, and its

eigenstates, including the CPA eigenstates, with eigenvalue zero (no outgoing waves), can

be labeled by azimuthal mode numbers, m = 0,±1,±2 . . ., corresponding to a single mul-

tipole field. (Note that in this approach, assuming an incident angular momentum state,

the scattered wave refers to the entire outgoing wave, as opposed to approaches based on

plane wave illumination, in which the outgoing wave consists of both a scattered wave and

an unscattered incident wave.) Incident fields with transverse magnetic (TM) polarization

have electric fields in the x-y plane only, and can excite LSPs of the cylinder, leading to

resonances. Incident fields with transverse electric (TE) polarization have electric field only

in the z-direction, cannot generate surface charge, and cannot excite LSPs. Thus we find

CPA resonances exist only for TM modes. Moreover, if ǫ1 > 0, corresponding to a dielectric

structure, then we find no subwavelength CPA resonances.

We determine the CPA resonances as follows. Outside the cylinder (r > R), the total

magnetic field of a TM mode is

Hz(r, θ, z) = H(2)
m (n0kr)e

imθ + sH(1)
m (n0kr)e

imθ, (1)

where n0 =
√
ǫ0, k = 2π/λ, and λ is the vacuum wavelength. H(1)

m (H(2)
m ) is the mth-order

Hankel function of the first (second) kind, and represents an outgoing (incoming) wave.

The complex number, s, is the relative amplitude of the outgoing wave for this mode (and

also, in this case, the eigenvalue of the S-matrix, since there is no inter-channel scattering).

Inside the metallic cylinder (r < R), the magnetic field is Hz(r, θ, z) = aJm(nkr)e
imθ, where

Jm is the Bessel function of the first kind, n =
√
ǫ, and a is a normalization constant. By

matching the fields at the metal/dielectric interface (r = R), we find

s =
nJm(nkR)H(2)

m
′(n0kR)− n0J

′

m(nkR)H(2)
m (n0kR)

n0J ′

m(nkR)H
(1)
m (n0kR)− nJm(nkR)H

(1)
m

′(n0kR)
, (2)

where J ′ (H ′) is the first-order derivative of the Bessel (Hankel) function. For CPA reso-

nance, the outgoing wave vanishes (s = 0), which corresponds to the condition

nJm(nkR)H(2)
m

′(n0kR) = n0J
′

m(nkR)H(2)
m (n0kR). (3)

Note that the lasing threshold would correspond to vanishing denominator (s → ∞), which

is just the complex conjugate condition. Eq. (3) is the CPA condition for any uniform
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FIG. 1. Perfect coupling of incident waves to the dipole (a) and quadrupole (b) resonances of surface

plasmons in a metallic nano-cylinder. Left panels show the spatial distribution of the magnetic

field Hz at an arbitrary time, showing that the incident wave spirals into the cylinder without any

outgoing wave. For (a), m = 1 and ǫ = −1.14 + 0.158i. For (b), m = 2 and ǫ = −1.03 + 0.00162i.

In both cases, kR = 0.3 and ǫ0 = 1. Right panels are an expanded view of the electric field

intensity distribution in the vicinity of the cylinder. The stationary intensity pattern is obtained

by averaging over one optical cycle, so the spiral pattern, which rotates in time, is smeared out.

To show the enhancement factor, the field intensity is normalized by the maximal intensity of the

incident field in the absence of the metallic cylinder. The scale bar is equal to the diameter of the

cylinder.

cylinder; as noted, only for a metallic cylinder, with ǫ1 < 0, can we obtain solutions with

kR ≪ 1.

Figure 1 plots the CPA solutions for dipole (m = 1) and quadrupole (m = 2) incident

fields for a metallic cylinder with radius R = 0.048λ. Strong build-up of local fields is

seen. The maximal enhancement of the electric field intensity via perfect coupling to the

quadrupole resonance of LSP exceeds that of bow-tie or directional antennas with plane

wave illumination [17, 18]. Of course, the latter would have higher local field enhancement

if the CPA condition is reached.

The same phenomenon can be realized in a metallic sphere. Again, LSP modes exist

only for TM polarization (the radial component of the magnetic field vanishes). The CPA
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condition is obtained following procedures similar to the above, and can be expressed as

ǫjl(y0)
∂[xh

(2)
l (x)]
∂x

x=x0

= ǫ0h
(2)
l (x0)

∂[yjl(y)]
∂y

y=y0

, (4)

where x =
√
ǫ0 k r, y =

√
ǫ k r, x0 =

√
ǫ0 k R, y0 =

√
ǫ k R, R is the radius of the metallic

sphere, ǫ and ǫ0 are the permittivity of the metallic sphere and dielectric host medium

respectively. jl is the lth-order spherical Bessel function, and h
(2)
l the spherical Hankel

function of the second kind.
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FIG. 2. CPA solution for a metallic sphere in free space. Real part (left vertical axis) and imaginary

part (right vertical axis) of the permittivity of the metal as a function of kR for perfect coupling of

impinging light to the LSP modes with l = 1 (a) and l = 2 (b). CPA is possible for an arbitrarily

small sphere with finite values of refractive index and absorption coefficient.

We consider a metallic sphere in free space (ǫ0 = 1.0). As noted, in order to tune to

CPA resonance, one must vary two parameters; here we fix the frequency and vary both

the real and imaginary parts of ǫ, as in Ref. [9]. Instead of showing specific plasmonic CPA

resonances at given values of kR, we show in Fig. 2 the continuous variation of the complex

“CPA permittivity” under variation of kR, for two resonances with l = 1, 2. Indeed we

find that plasmonic CPA resonances can be realized for an arbitrarily small metallic sphere.

When R → 0, ǫ1 → −2.0 and ǫ2 → 0 for l = 1. This corresponds to the quasi-static limit

of the LSP resonance. For l = 2, ǫ1 → −1.5, and again ǫ2 → 0 as R → 0. Both solutions

have ǫ2 vanishing in the quasi-static limit, because in this limit the radiative loss of the

sphere is tending to zero, requiring very small absorptivity to reach critical coupling. Larger

absorptivity actually decreases the total absorption.

Such low dissipative loss is not typically achievable for a solid metal nanoparticle. For

example, when the dispersive permittivity of gold ǫ(k) [19] is inserted into Eq. (4), one finds

that the smallest achievable value of kR is 0.91 at λ = 535 nm and l = 2. We therefore
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consider a composite silica core - gold shell structure, shown schematically in the inset of

Fig. 3(a). The core sphere has radius Rc and the shell’s outer radius is R. As the gold

shell gets thinner, the fraction of metal decreases and the dissipative loss of the system is

reduced. For a fixed ratio Rc/R, we vary k and R to find the CPA resonances (note that

ǫ changes with k according to the dispersion relation of the gold). As shown in the main

panel of Fig. 3(a), the minimum achievable value of kR for CPA decreases as Rc/R increases.

At the same time, the LSP resonance shifts to longer wavelengths where the metal loss is

lower. For example, when Rc/R = 0.9 and R = 63 nm, the CPA condition is reached at

λ = 771 nm for l = 1. The near-field average intensity enhancement, defined as the electric

field intensity averaged over the outer surface and divided by the maximal intensity of the

incident light in the absence of the core-shell structure, is about 244. It is notably higher

than the enhancement by tight focusing of a linearly or radially polarized beam [20] onto a

gold sphere of similar size to excite the dipole LSP resonance [21, 22].
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FIG. 3. CPA for silica core - gold shell structures. (a) Minimal value of kR as a function of Rc/R

for l = 1. Inset: a schematic diagram of the core-shell structure. (b) Corresponding wavelength

(λ = 2π/k) and radius R versus Rc/R.

It might appear that CPA cannot occur for dark (“non-radiative”) plasmonic resonances.

However, a typical dark mode only has a vanishing electric dipole moment; radiation can still

occur in higher multipole moments (e.g. magnetic dipole and electric quadrupole). Hence, it

is possible in principle to achieve CPA by coupling to a dark mode, as long as the radiative

coupling of the dark mode is not completely vanishing; however, similar to the quasi-static

limit, the high quality (Q) of the dark mode imposes the requirement of very low dissipation,

which may be challenging to achieve.

In contrast to a spaser (or laser), perfect absorption based on time-reversed lasing can

occur for any LSP resonance of the structure—not just the low-loss ones. Just as in a laser,
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the spaser usually oscillates in the LSP resonances with lowest loss, which saturates the

gain, making it difficult for higher-loss resonances to reach threshold. The CPA is a linear

device for which each resonance can be accessed independently by appropriate tuning of

parameters.

The CPA phenomenon is extremely sensitive to variations in the incident wave or the

dielectric environment. Small changes can violate the perfect-absorption condition, resulting

in a dramatic increase of the scattered intensity. Figure 4 plots the scattered intensity of the

outgoing wave, |s|2, for a metallic cylinder as a function of the incoming light frequency k.

As k deviates from a LSP resonance frequency, the scattered light intensity increases rapidly

from zero. The spectral width of the CPA resonance is ∆k/k ≃ 0.1, and it is determined by

the dissipative loss of the LSP mode. This result is promising for application to background-

free spectroscopy. A similar effect is found for a tiny change in refractive index or absorption

coefficient of the surrounding material, as shown in Fig. 4(b) for a variation in n0. Hence,

the effect may be useful for ultrasensitive detection of environmental changes. The high

sensitivity also means that some sort of adaptive scheme [6, 7, 23, 24] would be needed to

produce the correct incident wavefront if the surrounding is not perfectly homogeneous.
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FIG. 4. Sensitivity of CPA to variations in the incident wave and the dielectric environment.

(a) Normalized intensity |s|2 of the outgoing wave versus the frequency k of the incident light

(normalized by 1/R, where R is the radius of the metallic cylinder). CPA is reached at kR = 0.3

via resonant excitation of the LSP resonance with m = 2. The spectral width of the dip in |s|2

is determined by the dissipative loss of the LSP resonance. (b) |s|2 as a function of the change in

refractive index n0−1 of the dielectric material surrounding the metallic cylinder. CPA happens at

n0 = 1. A tiny (less than 1%) deviation of n0 from unity causes a dramatic growth of the scattered

light intensity.

In the recent development of metamaterial absorbers, impedance matching has been used
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to eliminate reflection of a plane wave from the front surface, with transmission minimized

by the use of multiple absorbing layers or a mirror at the back surface of the sample [25–29].

Although the dimension of each unit cell is subwavelength, the entire medium is macro-

scopic. Also perfect conversion of an electromagnetic wave to the surface plasmon polariton

has been realized with a bulk plasma by placing a subwavelength grating in front of the

plasma surface [30, 31]. CPA, which can be regarded as a generalization of the concept

of impedance matching to arbitrary geometries and dimension, is applied here to a single

subwavelength object in free space. By matching the incident field pattern to the radiation

pattern of a LSP resonance, 100% coupling efficiency is reached. However, the input field for

perfect-coupling to a nanosphere is an angular momentum eigenstate, which must converge

onto it from all directions, something not easily realized experimentally. To simplify the

experimental requirements, it will likely be useful to strongly break the rotation symmetry,

e.g. by employing ellipsoids or nano-rods, in order to approach the resonance condition with

a more directional input wave pattern.

The CPA mechanism differs from another application of the time-reversal principle to the

spatial-temporal localization of optical energy in a nanoplasmonic system [4]. In the latter

case, a short pulse is launched from a point in the near field and the radiation in the far field

is recorded. Time-reversal of the radiated pulse leads to concentration of input energy at the

position of the initial source at a time corresponding to the end of the excitation pulse, and

afterward the field passes through the focal point and diverges. This effect is not based on

intrinsic resonances of the nanostructure and the input energy is not completely absorbed

at the focus, unless a time-reversed source (sink) is placed there [32]. In contrast, the CPA

sets up a perfect “trap” for the incident light by matching it to a resonance of the system.

Thus it works only for coherent light at the resonance frequencies, but does not require a

coherently driven sink.

In summary, we have demonstrated the possibility of coherent perfect absorption of light

by nano-scale metallic objects, equivalent to time-reversing the spaser and perfect coupling

to localized surface plasmons. Such perfect absorption is fundamentally different from the

optical cloaking [33, 34] that has been extensively investigated in recent years. For optical

cloaking the impinging field is re-routed and appears as an unscattered outgoing wave;

whereas in the CPA there are no outgoing waves; for a certain input field the nanostructure

appears “black” (in a narrow band), but not invisible.
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