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The onset of exciton condensation in a topological insulator thin film was recently predicted. We
calculate the critical temperature for this transition, taking into account screening effects. Further-
more, we show that the proximity to this transition can be probed by measuring the Coulomb drag
resistivity between the surfaces of the thin film as a function of temperature. This resistivity shows
an upturn upon approaching the exciton-condensed state.

Introduction. — Recently, there has been great experi-
mental and theoretical interest in a new class of materials
called topological insulators (TIs) [1]. These materials
combine, for a particular doping level, an insulating be-
havior in the bulk with topologically protected conduct-
ing surface states that are described by a two-dimensional
(2D) Dirac-Weyl Hamiltonian. When the surfaces of a TI
film are independently doped or gated, electrons can be
induced in one layer and holes in the other. In 2009, Ser-
adjeh et al. [2] predicted that such a system can support
a so-called topological exciton condensate. Electrons in
one layer combine with holes in the other layer to form
excitons, which condense for low enough temperatures.
One of the interesting features of this state is that it
supports vortices in the order parameter: these vortices
carry a fractional charge ±e/2 [2].

In a drag experiment with a two-layer system a current
is applied through one of the layers (the drive or active
layer) and an induced voltage is measured in the other
layer (the passive layer). The drag resistivity ρD is de-
fined as the ratio between the electric field in the passive
layer and the current density in the active layer. In the
absence of an ordered state, the low-temperature behav-
ior of the drag resistivity is ρD ∝ T 2 [or T 2 log(T ) for a
2D system with short-range interactions]. This quadratic
temperature dependence was first observed in 1991 by
Gramila et al. [3] and is a hall mark of Fermi-liquid be-
havior. A review of drag effects in two-layer systems is
given in Ref. [4]. A departure from the standard ρD ∝ T 2

temperature dependence indicates the occurrence of non-
Fermi-liquid behavior. The low-temperature dependence
of ρD for semiconductor electron-hole bilayers was stud-
ied experimentally in numerous recent works [5, 6]. On
the theoretical side, we note the calculation by Hu [7],
which predicted an enhancement of Coulomb drag for or-
dinary electron-hole bilayers at temperatures just above
the excitonic instability, and the analysis of Ref. [8],
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FIG. 1: The drag resistivity ρD [in units of ρ̄D = (ν0U)2~/e2,
with ν0 the density of states at the Fermi level and U the
interlayer interaction strength] calculated from Eq. (3) as a
function of the reduced temperature T/Tc. With this choice
of units ρD/ρ̄D depends on two parameters – the chemical
potential µ and the critical temperature Tc – which implicitly
determine the interaction strength U in Eq. (1). The curves
correspond to the case of equal chemical potentials in the
two layers (µ = 0.04 eV). From top to bottom the critical
temperatures are Tc/TF = (1/150, 1/200, 1/250). The vertical
dashed lines are located at T = Tc (left) and at the “upturn”
temperature scale (see text) T = Tu (right).

which predicted a sharp increase of the drag resistivity
as the temperature is lowered below the critical temper-
ature of condensation.

In this Letter we show that the drag resistivity shows
a precursor of the topological exciton condensed phase,
via an upturn upon approaching the critical tempera-
ture, as shown in Fig. 1. Close to the critical tempera-
ture we find that on the basis of a Boltzmann analysis
ρD ∝ log(T − Tc). This upturn could therefore be used
to determine the proximity to the phase transition. We
note that the system considered here resembles double-
layer graphene (DLG) – a system of two graphene layers
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separated by a dielectric barrier. The main differences
are the number of degenerate electron species and the
dielectric constant [9, 10]. The results presented here
are therefore also qualitatively applicable to DLG, a sys-
tem for which exciton condensation has been predicted
too [9, 11, 12]. Coulomb drag in DLG has been inten-
sively studied theoretically [13]. This literature, however,
refers to drag in which both layers are either electron- or
hole-doped so that exciton condensation does not occur.

Coulomb drag and exciton condensation. — We con-
sider a TI thin film whose top layer is electron-doped
and whose bottom layer is hole-doped. We apply the
“closed-band approximation” [9, 11, 12], i.e., we con-
sider only the upper Dirac cone for the electron layer
and the lower Dirac cone for the hole layer. This is jus-
tified since the temperatures we consider are sufficiently
small and the screening lengths sufficiently large, so that
the far-lying bands can in first instance be considered
inert. Then, the dispersions are well approximated by
εt(k) = v|k|−µt and εb(k) = −v|k|+µb for the top and
bottom layer, respectively (~ = 1 throughout this Let-
ter). Here v ≈ 5 × 105 m/s is the Fermi velocity appro-
priate for the surface states of a typical TI thin film [14].
Note that the chemical potential for the electrons in the
bottom layer is equal to −µb. These formulas are valid
up to a cutoff ξ = 0.2 eV, which is the typical distance be-
tween the Dirac point and the bulk bands in a TI. We also
introduce the mean Fermi energy, µ = (µt + µb)/2, and
half the chemical potential imbalance, h = (µt − µb)/2.

Our theoretical treatment is based on the Boltzmann
equation, whose main merit is to give a physically trans-
parent picture of the scattering processes that control
the momentum transfer rate between the layers. The cru-
cial quantity in the Boltzmann approach is the scattering
amplitude Veff(k1,k2,k3,k4), which is diagrammatically
presented on the left-hand side in Fig. 2, where k1 and
k2 are incoming electron momenta, one from each layer,
and k3 and k4 outgoing electron momenta.

Under ordinary circumstances this interaction is well
approximated by the single screened interaction line
V0(|k1−k4|, εt(k1)−εt(k4)), which is shown as a wavy line
in Fig. 2 (see Sect. I in Ref. [15]). But this simple picture
breaks down in the vicinity of the exciton pairing tran-
sition, where it becomes necessary to include the effect
of pairing fluctuations, diagrammatically represented by
the infinite series of ladder diagrams shown in the right-
hand side of Fig. 2. This series of diagrams diverges at
the critical temperature Tc when the center-of-mass mo-
mentum of the electron-hole pair K = k1 − k3 and the
corresponding energy Ω = εt(k1) − εb(k3) tend to zero.
Since the screened interlayer interaction V0 is finite in the
limit in which the momentum transfer q = |k1−k4| van-
ishes (i.e. it is not a long-range interaction), the quali-
tative behavior of the drag conductivity does not change
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FIG. 2: The Bethe-Salpeter equation for the effective inter-
action Veff in Eq. (1). The thin wavy line is V0 and the ar-
rows are the electron propagators in the top layer (top ar-
rows) and the bottom layer (bottom arrows). Furthermore,
K = k1−k3 = k4−k2 is the center-of-mass momentum of the
electron-hole pair and q = k1−k4 = k3−k2 is the interlayer
momentum transfer, which is responsible for Coulomb drag.
Finally, p is an integration variable. To make contact with
the drag resistivity in Eq. (3) replace k = k1 and k′ = k2.

when we neglect the momentum dependence of V0. In
this case the ladder sum in Fig. 2 can be performed ex-
actly. In this manner one obtains an effective interaction
that depends only on the center-of-mass momentum K
and energy Ω as

V (k1,k2,k3,k4) ' Veff(K,Ω) ≡ U

1− UΞ(K,Ω)
, (1)

where U is the momentum-independent contact interac-
tion strength representing the screened interaction and

Ξ(K,Ω) =
1

A

∑
k

n(εt(k + K))− n(εb(k))

εb(k)− εt(k + K)− Ω− i0+
(2)

is the pairing susceptibility, A being the 2D electron
system area. The temperature T enters the above ex-
pression through the Fermi-Dirac distribution, n(E) =
1/[1 + exp(βE)], where β = (kBT )−1. It is easy to check
that, in the symmetric case (h = 0) Ξ(0, 0) diverges
logarithmically at zero temperature, and therefore the
denominator of Eq. (1) must vanish at some non-zero
temperature Tc no matter how small the electron-hole
attraction. This is the mean-field pairing transition tem-
perature. We see that, as the temperature is decreased
towards Tc, pairing fluctuations first lead to an enhance-
ment of Veff for small K and Ω and ultimately to a pole
at Ω = 0 and K = 0 as T = Tc. The occurrence of
this pole is the cause for the upturn of the Coulomb drag
resistivity close to Tc.

By approximating V0 by a contact interaction, we have
introduced an unknown quantity in our theory, the con-
tact interaction strength U , on which Tc depends. We
stress that we do not calculate Tc by determining an es-
timate of U . Instead, we leave U as a parameter in our
theory, the dependence on which we scale out in Fig. 1.
We determine the actual value of Tc using an alternative
calculation, which does take into account the dependence
of V0 on momentum (see Sect. II in Ref. [15]).
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Inserting Eq. (1) in the Boltzmann collision integral
and performing standard manipulations, we finally arrive
at the following expression for the drag resistivity:

ρD = − β

2(2π)6e2nv2

∫
dKdΩ

|Veff(K,Ω)|2

sinh2(βΩ/2)

×
∫
dkdk′=m [b(k;K,Ω)]=m [b(k′;K,Ω)]

× [vt(k
′ + K)− vt(k + K)] · [vb(k′)− vb(k)] , (3)

where vt(b)(k) ≡∇εt(b)(k) are the group velocities, n is
the single layer carrier density, and

b(k;K,Ω) ≡ n(εt(k + K))− n(εb(k))

εb(k)− εt(k + K)− Ω− i0+
(4)

is the summand of Eq. (2). Since vt(k) and vb(k) are
oppositely directed ρD is positive, as expected for carriers
of opposite polarities.

Drag Resistivity. — To determine the drag resistivity
we need to evaluate Eq. (3) numerically. However, the
qualitative behavior near Tc can be obtained analytically
as follows (in what follows we first consider the balanced
case h = 0). First, we notice that the denominator of
Eq. (1) can be expanded, for small K and Ω as follows:

1− UΞ(K,Ω) ' α(T ) + a(T )Uν0(βvK)2

+ iUν0βΩ/4 , (5)

where α(T ) ∝ T − Tc measures the distance from the
critical point, ν0 = µ/(2πv2) is the density-of-states at
the Fermi energy, and a(T ) is a (dimensionless) posi-
tive ultraviolet-convergent quantity. Further, for K → 0
we have [vt(k

′ + K) − vt(k + K)] · [vb(k′) − vb(k)] =
2v2[cos(φ) − 1], where φ is the angle between k and k′.
Since this quantity vanishes only in a set of zero measure
with respect to the two 2D integrals over k and k′ in
Eq. (3), we can approximate the scalar product with a
momentum-independent quantity of the order of v2. The
integrals over k and k′ can now be carried out analyti-
cally. Using that

∫
dk =m[b(k;0,Ω)] = =m[Ξ(0,Ω)] =

−ν0βΩ/4 for βΩ� 1, we obtain

ρD ∝
∫
dKdΩ

(βΩ/4)2

sinh2(βΩ/2)

× (ν0U)2K

[α(T ) + aUν0(βvK)2]
2

+ (Uν0βΩ/4)2
, (6)

which is immediately seen to diverge logarithmically
when T → Tc, i.e., for α → 0. This behavior is not
altered by the momentum dependence of V0, since V0 re-
mains finite in the limit q → 0 due to screening by carrier
density fluctuations.

In Fig. 1 we show the numerically evaluated drag re-
sistivity ρD as a function of temperature. We observe
that for temperatures much larger than Tc, the drag re-
sistivity increases quadratically as ρD ∝ T 2 [16]. The

logarithmic divergence of ρD ∝ log(T − Tc) is clearly
visible. From top to bottom the curves correspond to
Tc/TF = (1/150, 1/200, 1/250). Following Ref. [6], we
define Tu as the temperature at which the upturn of
ρD starts, as shown in Fig. 1. As a rule of thumb,
Tu ≈ (3/2)Tc.

Critical temperature. — In order to assess whether
the upturn in the drag resistivity can be observed exper-
imentally, we now need to actually calculate the (mean-
field [17]) critical temperature as a function of interlayer
distance and carrier density, taking into account screen-
ing effects [18]. To do so, we employ a separable ap-
proximation to the momentum-dependent interlayer in-
teraction V0(|k1−k4|, εt(k1)− εt(k4)) – see Ref. [19] and
Sect. II in Ref. [15]. The advantage of this approach over
using a contact interaction is that it captures the decrease
of the interaction strength V0 with increasing transferred
momenta. In particular, no ultraviolet cutoff on which
the result for Tc would depend is needed.

As briefly explained in Sect. I of Ref. [15] and in much
more detail in Ref. [20], the screened interlayer Coulomb
interaction is given by V0(q, ω) = Vtb(q)/ε(q, ω), where
Vtb(q) is the bare interaction between one electron on the
top surface and one on the bottom surface, q = |k − k′|
and ω = εb(k)− εb(k′) are momentum and energy trans-
fers, respectively, and ε(q, ω) is the dielectric screening
function of the carriers, which we approximate in the
random phase approximation. Both Vtb(q) and ε(q, ω)
depend on the dielectric constants of the TI and of the
environment surrounding the thin film.

We consider a TI film with vacuum above the top sur-
face and a typical substrate material (e.g. SiO2) below
the bottom surface: the appropriate background dielec-
tric constants are εtop = 1, εTI = 100, εbottom = 4.
For the balanced case with h = 0 we obtain the phase
diagram in Fig. 3. From right to left the lines corre-
spond to carrier densities n = (0.25, 0.5, 1)× 1010 cm−2.
Our results show that the critical temperatures are within
reach using existing cryogenic techniques for solid-state
systems. Furthermore, also the required surface carrier
densities have been reached previously [1]. In the inset
of Fig. 3 we show the effect of a non-zero density imbal-
ance. The solid curves represent the behavior of Tc/µ
for constant kFd. From top to bottom the curves corre-
spond to kFd = (0.05, 0.075, 0.1). We note that Tc/µ de-
creases strongly with increasing density imbalance. The
dashed line is the line along which the quartic term of the
Ginzburg-Landau expansion of the free energy in pow-
ers of the order parameter, evaluated at Tc, vanishes (see
Sect. III of Ref. [15]). Thus, for a fixed kFd, the transition
becomes first order as h grows beyond the intersection of
the dashed line and the curve corresponding to that kFd
value. The first-order region below the dashed line can-
not be accurately described by our present normal-state
formalism. The decreasing behavior of Tc with h indi-
cates that the excitonic transition is strongly suppressed
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FIG. 3: Critical temperature Tc (in K) versus interlayer dis-
tance d (in nm) in the absence of density imbalance (h = 0).
From right to left the lines correspond to carrier densities
n = (0.25, 0.5, 1) × 1010 cm−2. Inset: The critical lines Tc/µ
versus h/µ. From top to bottom the lines correspond to
kFd = (0.05, 0.075, 0.1). The critical lines terminate on the
dashed line, i.e., the locus of the points where the fourth order
term of the Ginzburg-Landau expansion of the free energy in
powers of the order parameter vanishes.

by the presence of any density imbalance. Thus, it is
important in experimental realizations to have accurate
control over the electron and hole densities in the two
layers.

Discussion and conclusions. — Our theory predicts a di-
vergence of ρD as T approaches Tc, but does not include
the possible suppression of this divergence by critical fluc-
tuations in the immediate vicinity of Tc. We expect that
inclusion of these fluctuations leads to a down turn of
ρD for temperatures very close to the critical tempera-
ture [21], before increasing again upon further decrease
of the temperature, as predicted in Ref. [8].

We note that if the layers are brought too close to-
gether, the wave functions in the top layer and the bot-
tom layer begin to overlap and interlayer tunneling be-
comes important. This limits our theory to a minimal
interlayer distance d & 10 nm. Actually, also conduc-
tion over the side layers of the TI film could be impor-
tant. One expects that for samples of large enough area,
these can be neglected. If not, a transport-prohibiting
gap could be induced in the side layers by interfacing
those with a ferromagnet.

In closing, we note that the upturn of ρD is analo-
gous to the upturn of the spin-drag resistivity recently
predicted in a cold gas of fermionic atoms near a ferro-
magnetic transition [22]. In particular, spin-fluctuation
contributions to the effective interaction in the ferromag-
netic case play the same role as pairing fluctuations in
the present case. The reason why in Ref. [22] the spin
drag resistivity was predicted to remain finite at Tc is
that the transverse spin-fluctuation channel was treated

as part of the familiar (Hartree) charge and longitudi-
nal spin-density fluctuation channels. When transverse
spin fluctuations in the Fock channel are also included, a
logarithmic divergence is obtained, just as in the present
case. We also note that our results, while qualitatively
similar to those obtained in Ref. [7] for massive electrons
and holes in a conventional electron-hole semiconductor
bilayer, differ, at the theoretical level, by the inclusion
of an additional term in the collision integral. This term
is easily missed by using the Kubo formula. The nature
of the additional term is similar to the vertex corrections
that are responsible for replacing the momentum lifetime
by the transport lifetime in the classical Drude formula
for the resistivity.
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