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Motivated by recent success of local electron tunneling into heavy fermion materials, we study the local
electronic structure around a single Kondo hole in an Anderson lattice model and the Fano interference pattern
relevant to STM experiments. Within the Gutzwiller method,we find that an intragap bound state exists in the
heavy Fermi liquid regime. The energy position of the intragap bound state is dependent on the on-site potential
scattering strength in the conduction andf -orbital channels. Within the same method, we derive a newdI/dV
formulation, which includes explicitly the renormalization effect due to thef -electron correlation. It is found
that the Fano interference gives asymmetric coherent peaksseparated by the hybridization gap. The intragap
peak structure has a Lorenzian shape, and the correspondingdI/dV intensity depends on the energy location of
the bound state.

PACS numbers: 71.27.+a, 74.55.+v, 75.20.Hr, 75.30.Mb

Introduction. The intermetallic heavy fermion compounds
based on either rare earth elements or on actinides [1–3] ex-
hibit many unusual properties like heavy Fermi liquid (HFL),
magnetic ordering, quantum phase transitions and associated
non-Fermi liquid, as well as unconventional superconduc-
tivity [4]. In these materials, there are two types of elec-
trons: delocalized conduction electrons (c-electrons), which
derive from outer atomic orbitals, and strongly localizedf -
electrons that singly occupy inner orbitals. It is well ac-
cepted that the interplay between thec-f hybridization and the
screened on-site Coulomb repulsion is the key to the above-
mentioned anomalous properties. However, the precise na-
ture of the coherent Kondo state responsible for the forma-
tion of HFLs remains hotly debated [5–8]. Recent success of
scanning tunneling microscopy (STM) experiments on heavy
fermion materials [9–11] opens a new avenue toward under-
standing of these remarkable properties. Interest in the prob-
lem was also stimulated by the possibility to reveal the nature
of electronic correlation effects by impurities and defects in
heavy fermion materials as in unconventional superconduc-
tors including cuprates [12] and iron pnictides [13–15] or se-
lenides [16].

Theoretical challenge in the interpretation of differential
tunneling conductance as measured by STM in heavy-fermion
lattice systems and around a single magnetic impurities or,
more generally, disordered Kondo lattice systems, requires
a proper treatment of electron correlation effects and quan-
tum interference between the electrons tunneling from the
STM tip into the conduction band and into the magneticf -
electron states. In the single Kondo impurity case, the line
shape ofdI/dV has been described reasonably well with a
phenomenological form, as first discussed by Fano [17]. A
microscopic understanding of this Fano line shape was re-
cently provided [18, 19] in the single Kondo impurity case.
In addition, the essence of a similar line shape observed on
a clean crystal surface [9, 10], which has the lattice transla-
tional symmetry, can be captured within a similar microscopic

approach [18–21]. However, there is still a significant ques-
tion about the role of correlation effect in the Fano interfer-
ence. In one scenario [18], the passage of an electron from
the STM tip is accompanied by a simultaneous spin flip of the
localized moments via cotunneling mechanism. When the lo-
cal spin operator is represented in terms of pseudofermions,
this cotunneling term is equivalent to an effective tunneling
in the pseudofermion channel renormalized by a local boson
condensation order parameter inherent to the Kondo lattice
itself [18]. In another scenario within the same Kondo lat-
tice model [19], the renormalization factor is absent in the
dI/dV formula. For both the single Kondo impurity problem
and the Kondo lattice model, since the renormalization factor
can be absorbed into the bare tunneling amplitude, this differ-
ence will not cause qualitative difference in analysis of STM
data. However, for a Kondo hole or a more general disordered
Kondo lattice problem, a logically consistentdI/dV formula-
tion is important. In connection with the STM measurements,
the latter type of problems just began to attract more focused
interest because the inhomogeneity may provide important in-
sight into the complex electronic structure of heavy fermion
materials.

The Kondo hole problem was previously studied within an
Anderson lattice model, where thef -electron self-energy for
the pristine system was obtained from the second-order per-
turbation in Hubbard repulsion [22]. In the Kondo insula-
tor (KI) regime, in which a hybridization gap is open at the
Fermi energy, it was shown from thef -electron local den-
sity of states [22] that the Kondo hole introduced an intragap
bound state. However, a very recent study of a single Kondo
hole problem within the Kondo lattice model indicated that
the existence of the intragap bound state depends on the na-
ture of defects in the HFL regime [23]. This discrepancy sug-
gests further theoretical studies are needed. In addition,exist-
ing studies [22, 23] are limited to local density of states and
an analysis of Fano interference in the Kondo hole problem
is still lacking. In this Letter, we study the local electronic
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structure around a single Kondo hole in an Anderson lattice
model as well as the Fano interference pattern relevant to STM
experiments. Within the Gutzwiller method, we are able to
demonstrate that the intragap bound state exists regardless of
whether the system is in the HFL or KI regime. The energy
position of the intragap bound state is dependent on the on-site
potential scattering strength in the conduction andf -orbital
channels. The same Gutzwiller method enables us to include
explicitly the renormalization effect due to thef -electron cor-
relation into thedI/dV formulation, which is conceptually
consistent with the cotunneling mechanism [18]. It is found
that the Fano interference does give rise to an asymmetric co-
herent peaks separated by the hybridization gap, while it tunes
the intragap peak structure dependent on the energy location
of the bound state, as shown indI/dV .

Kondo hole model and Gutzwiller formalism.Our Hamil-
tonian for the single Kondo hole system is written as

H = −
∑

ij,σ

(tcij + µδij)c
†
iσcjσ +

∑

i,σ

[Vcfc
†
iσfiσ + H.c.]

+
∑

i,σ

(ǫf − µ)f †
iσfiσ +

∑

i

Ufn
f
i↑n

f
i↓

+
∑

σ

ǫIcc
†
IσcIσ +

∑

σ

(ǫIf − ǫf)f
†
IσfIσ − Ufn

f
I↑n

f
I↓

+
∑

σ

[(V I
cf − Vcf )c

†
IσfIσ + H.c.] . (1)

Here the operatorsc†iσ (ciσ) create (annihilate) a conduction
electron at siteri with spin projectionσ while the operators
f †
iσ (fiσ) create (annihilate) af -level electron at siteri with

spin projectionσ. The number operators forc andf orbitals
with spinσ are given bync

iσ = c†iσciσ andnf
iσ = f †

iσfiσ, re-
spectively. The quantitytcij is the hopping integral of the con-
duction electrons, andǫf is the localf -orbital energy level
on the magnetic atoms. The hybridization between the con-
duction andf -orbital on the magnetic atoms is represented
by Vcf and thef -electrons on the magnetic atoms experience
the Coulomb repulsion of strengthU . The first two lines on
the right-hand side of Eq. (1) constitute the standard Ander-
son lattice model; while the last two lines represent the effect
of a doped nonmagnetic atom, which without loss of general-
ity is located at the originrI = (0, 0). Thef -orbital energy
level on the singly doped nonmagnetic atom is given byǫIf . In
the Kondo hole problem,ǫIf will be adjusted to ensure there
is nof -electron occupation on the missingf -character center
and as such the effect of on-site Coulomb repulsion can be
negligible in the study of low energy electronic structure.In
addition, the Kondo hole will also give rise to a potential scat-
tering potentialǫIc and a possible change of local hybridization
V I
cf . These three parameters make the description of a Kondo

hole more realistic, demonstrating the flexibility of the An-
derson lattice Hamiltonian. For simplicity, the effect of local
hybridization change is neglected by assumingV I

cf = Vcf in
the present work.

Due to the presence of onsite Hubbard interactionU be-
tween thef -electrons on the magnetic atoms in Eq. (1), the

above problem is strongly correlated. This strong correlation
effect can be accounted for by reducing the statistical weight
of double occupation in the Gutzwiller projected wavefunc-
tion approach [24], and the projection can be carried out semi-
analytically within the Gutzwiller approximation [25–27]. In
the present problem, the lattice translation symmetry is bro-
ken due to the Kondo hole, we use a spatially unrestricted
Gutzwiller approximation (SUGA) [28–32] to translate the
original Hamiltonian Eq. (1) into the following renormalized
mean-field Hamiltonian:

Heff = −
∑

ij,σ

(tcij + µδij)c
†
iσcjσ +

∑

i6=I,σ

[Vcfgiσc
†
iσ f̃iσ + H.c.]

+
∑

i6=I,σ

(ǫf + λiσ − µ)f̃ †
iσ f̃iσ +

∑

i6=I

Ufdi +
∑

σ

ǫIcc
†
IσcIσ

+
∑

σ

(ǫIf − µ)f̃ †
Iσf̃Iσ +

∑

σ

[V I
cfc

†
Iσ f̃Iσ + H.c.] , (2)

whereλiσ anddi are the Lagrange multiplier and the double
occupation at sitei. We have used̃f †

iσ (f̃iσ) to denote the
quasiparticle field operators to differentiate from the truly f -
electron operators in Eq. (1). The localc-f hybridization has
been renormalized by a factor ofgiσ, which is given by

giσ =

[

(n̄f̃
iσ − di)(1− n̄f̃

i + di)

n̄f̃
iσ(1− n̄f̃

iσ)

]1/2

+

[

di(n̄
f̃
iσ̄ − di)

n̄f̃
iσ(1 − n̄f̃

iσ)

]1/2

,

(3)

with n̄f̃
iσ being the expectation value of the spin-σ density

operatornf̃
iσ = f̃ †

iσ f̃iσ and n̄f̃
i =

∑

σ n̄
f̃
iσ. Minimization

of the expectation value ofHeff leads to the following self-
consistency conditions forλiσ anddi:

λiσ = Vcf
∂giσ

∂n̄f̃
iσ

(〈c†iσ f̃iσ〉+ c.c) , (4a)

−U = Vcf

∑

σ

∂giσ
∂di

(〈c†iσ f̃iσ〉+ c.c) , (4b)

for i 6= I. Equation (2) can be cast into the Anderson-
Bogoliubov-de Gennes (Anderson-BdG) equations [33]

∑

j

(

hc
ij ∆ij

∆∗
ji hf̃

ij

)

(

un
jσ

vnjσ

)

= En

(

un
iσ

vniσ

)

, (5)

subject to the constraints given by Eq. (4). Herehc
ij =

−tcij − µδij + ǫcIδiIδij , ∆ij = Vcf [gi(1 − δiI) + δiI ]δij ,

andhf̃
ij = [(ǫf + λi)(1 − δiI) + ǫIfδiI − µ]δij . Since most

of heavy-fermion systems have a layered structure, in which
the dominant effects occur in the planes containingf -electron
atoms, we solve this set of equations self-consistently viaex-
act diagonalization on a two-dimensional square lattice. After
the self-consistency is achieved, one can then calculate the
projected local density of states (LDOS) as defined by:

(ρci , ρ
cf̃
i , ρf̃i ) = −2

∑

n

(|un
i |

2, un
i v

n
i , |v

n
i |

2)
∂fFD(E − En)

∂E
,

(6)
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FIG. 1. (Color online) Solution to the Kondo hole problem in the
heavy Fermi liquid regime forµ = −0.4. Contour plots of the
Gutzwiller factorgi (a), the Lagrange multiplierλi, the double oc-

cupationdi (c), thec-electron densitȳnc
i (d), f -electron densitȳnf̃

i

(e), and the hybridization densitȳncf̃
i (f). The parameter values

ǫIf = 100 and ǫIc = 0. The values of other parameters are given
in the main text.

where the Fermi-Dirac distribution functionfFD(E) =
[exp(E/kBT ) + 1]−1. Here we have used the fact that the
eigenfunctions are real and the system has a two-fold spin de-
generacy in the non-magnetic state, for which quantities like

n̄f̃
iσ, giσ, andλiσ become spin-independent. Throughout this

work, the quasiparticle energy is measured with respect to the
Fermi energy and the energy unittc = 1 is chosen.

Local electronic structure around the Kondo hole.In our
numerical calculations, we take the following values of pa-
rameters for the pristine system: The on-site Coulomb inter-
action onf -electronsU = 2, the bare hybridizationVcf = 1,
and the localf -level is taken to beǫf = −1. The temperature
is fixed atT = 0.01. We solve the Anderson-BdG equations
on a32 × 32 square lattice (by assuming a periodic bound-
ary condition) to determine the self-consistency parametersgi
andλi while calculate the LDOS by using the supercell tech-
nique [34] (8× 8 supercells are used). The chemical potential
is varied so that the pristine system can be tuned into the HFL
or KI regime. To describe the Kondo hole, we have fixed the
value ofǫIf to be positive. This choice is consistent with the
experimental realization of Kondo holes by substituting a Ce
ion in a stoichiometric Ce compound by a La atom or a U ion
in a U-heavy-fermion system by a Th atom, where thef -level
is unoccupied by electrons on these impurity atoms.

Figure 1 shows the spatial variation of the self-consistently

determined Gutzwiller factorgi (panel (a)), Lagrange multi-
plierλi (panel (b)), the double occupationdi, as well as partial

charge densitȳnc
i (panel (d)),n̄f̃

i (panel (e)), and̄ncf̃
i (panel

(f)) around the Kondo hole in the HFL regime withµ = −0.4.
HereǫIf = 100 andǫIc = 0. The change of all these quantities
happens around the Kondo hole. The short length scale of the
change is consistent with the coherence length as estimated
by ξ = ~〈vF 〉/πgVcf , where〈vF 〉 and g are the averaged
Fermi velocity and the Gutzwiller renormalization factor for
the pristine system. With the given set of parameter values,we
estimate~〈vF 〉 = 4.89, andg = 0.95 from the self-consistent
iterations, which leads toξ being about 1.64 lattice constants.
The anisotropy of the spatial change follows the underlying
lattice, which is similar to that expected for a superconduct-
ing order parameter around a unitary non-magnetic impurity
in a short-coherences-wave superconductor. With the cho-
sen parameter, it is found that the Kondo hole is negatively
charged in the conduction band, by which we mean the con-
duction electron density on the Kondo hole is smaller than the
value for the underlying pristine system. To get a positively
charged Kondo hole in the conduction band, an attractive po-
tential scatteringǫIc must be introduced.

In Fig. 2, we show the local partial and hybrid DOS in the
HFL regime but with various values ofǫIf andǫIc [The profile
of self-consistency quantities around the Kondo hole remains
similar to those shown in Fig. 1 and not shown here]. In the
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FIG. 2. (Color online) Local density of states, in the HFL regime, on
the Kondo hole site (left column) and on its nearest neighboring site
(right column). Panels with label (aX), (bX), and (cX) correspond
to the conduction band andf -quasiparticle, and hybrid density of
states, respectively. The red-dashed line is for the pristine case; the
black-solid and blue-dotted lines forǫIf = 1.0 and100 with ǫIc = 0

fixed, the green-dashdotted line forǫIf = 100 while ǫIc = −1.0. The
coherent peaks for the pristine system are located atE = 0.016 and
0.504. The bound state peak due to the presence of Kondo hole is
located atE = −0.082 and0.224 for ǫIf = 1 and100 with ǫIc = 0

fixed, and atE = 0.064 for ǫIf = 100 but ǫIc = −1.0.
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FIG. 3. (Color online)dI/dV , in the heavy Fermi liquid regime, as a
function of energy on the Kondo hole (a) and its nearest neighboring
site (b) corresponding to Fig. 2, as well as thedI/dV spatial map
with selected energiesE = 0.016 (c), 0.224 (d), and 0.504 (e). These
energies correspond to the coherent peak position (E = 0.016 and
0.504) and the intra-gap peak position (E = 0.224) for ǫIf = 100

andǫIc = 0.

absence of Kondo hole, the LDOS is spatially independent,
but both the local partial and hybrid DOS is asymmetric with
respect to the chemical potential (E = 0). The DOS intensity
is peaked at the coherent gap edge (see the red-dashed line in
the figure) and is finite at the Fermi energy, indicating the elec-
tron states are in the HFL regime. In the presence of Kondo
hole, whenǫIf is increased, an intragap bound state is formed
with the energy position moved toward the center of the gap.
With increasedǫIf , the DOS intensity on thef -channel van-
ishes directly on the Kondo hole site while becomes stronger
on the site nearest neighboring to the Kondo hole. However,
the corresponding DOS in the conduction band has an oppo-
site trend. Furthermore, an attractive potential scattering on
the conduction channel will further tune the bound state peak
away from the gap center. It is also interesting to note that
the hybrid DOS exhibits negative-sign peak for the intragap
state for weak to intermediate values ofǫIf andǫIc . Our result
agrees with the STM observation of an electronic bound state
at thorium atoms, when they are substituted for U atoms in
URu2Si2 [35].

Fano interference pattern around the Kondo hole.To
model the STM electron tunneling, for which a schematic
picture can be found in Fig. 1 of Ref. 18, we introduce the
tunneling Hamiltonian between the STM tip and the sample
at a specified measure site “i”: HT =

∑

σ Vtc{c
†
tσ[ciσ +

(Vtf/Vtc)fiσ] + H.c.}, whereVtc andVtf are the amplitudes
for tunneling into conduction andf -electron states. Within
the Gutzwiller approach to account for thef -electron corre-
lation, tunneling amplitudeVtf will be renormalized by the
local Gutzwiller factorgi, that is,Vtf → giVtf , which leads
to, in the weak-tunneling limit, the zero-temperature differen-
tial tunneling conductance [36]:

dI

dV
=

2e2πN0V
2

tc

~
[ρci (E)+2rgiρ

cf̃
i (E)+r2g2i ρ

f̃
i (E)] , (7)

wherer = Vtf/Vtc. Here we have assumed the tip density of

states to be independent of energy and approximated its value
at the Fermi energyN0, which is on the order of magnitude of
the inverse band width of the tip. Equation (7) indicates that
the renormalization due to thef -electron correlation effect in
the heavy fermion materials must be taken into account ex-
plicitly in the tunneling conductance formula. This formula is
logically consistent with the cotunneling mechanism [18],and
must be used in theoretical approaches based on an auxiliary
field theory.

As is shown in Fig. 2, the hybrid DOS is not positively
definite, the line shape ofdI/dV is determined not only by
whether the electronic structure for the pristine system has
the particle-hole symmetry but also by the relative strength of
tunneling amplitude of conduction band andf -electron chan-
nel. Figure 3 shows the energy dependence ofdI/dV on
the Kondo hole (panel (a)) and its nearest-neighboring site
(panel (b)), as well as its spatial dependence at selected en-
ergies (panels (c)-(e)), in the HFL regime withr = 0.2. We
used the zero-temperature formula (Eq. (7)), forT = 0.01
as a very low temperature solely for technical reasons. As
can be seen from Fig. 3(a)-(b), the Fano interference makes
the dI/dV characteristic strongly asymmetric, with the the
continuum part ofdI/dV intensity at negative energies much
smaller than at positive energies. The Fano interference also
leads to differentdI/dV intensity maps at the two gap edges
(see Fig. 3(c) and (e)) with a ripple-like structure easily visible
at the positive energy side. However, the peak structure due
to the intragap bound state formed around the Kondo hole is
robust against the Fano interference. On the Kondo hole site,
the overalldI/dV characteristic is similar to that of LDOS
on the conduction band; while its nearest neighboring site,the
characteristic is sensitive to the detailed parameter values of
ǫIf andǫIc . In addition, the spatial imaging ofdI/dV charac-
teristic (Fig. 3(d)) suggests the Kondo hole induced intragap
states are localized states.

Conclusion.We have studied the local electronic structure
around a single Kondo hole in an Anderson lattice model and
the Fano interference pattern relevant to STM experiments.
Within the Gutzwiller method, we have obtained the exis-
tence of the intragap bound state induced around the Kondo
hole in the HFL regime. The energy position of the intra-
gap bound state is dependent on the on-site potential scatter-
ing strength in the conduction andf -orbital channels. Within
the same method, we have also derived a newdI/dV for-
mulation, which includes explicitly the renormalization effect
due to thef -electron correlation. It has been found that the
Fano interference gives rise to highly asymmetric coherent
peak structure separated by the hybridization gap. The intra-
gap peak structure has a Lorenzian shape. The corresponding
dI/dV intensity depends on the energy location of the bound
state and the location of the STM measuring point. We have
also addressed the Kondo hole problem in the Kondo insula-
tor regime withµ = 0 (not shown). The major finding for the
HFL regime still holds except for the fact that the electronic
states are fully gapped at the Fermi energy, and the Kondo
hole becomes positively charged forǫIc = 0.
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