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We propose an implementation of a source of strongly sub-Poissonian light in a system consisting
of a quantum dot coupled to both modes of a lossy bimodal optical cavity. When one mode of
the cavity is resonantly driven with coherent light, the system will act as an efficient single pho-
ton filter, and the transmitted light will have a strongly sub-Poissonian character. In addition to
numerical simulations demonstrating this effect, we present a physical explanation of the under-
lying mechanism. In particular, we show that the effect results from an interference between the
coherent light transmitted through the resonant cavity and the super-Poissonian light generated by
photon-induced tunneling. Peculiarly, this effect vanishes in the absence of the cavity loss.

An optical cavity containing a strongly coupled quan-
tum emitter, such as an atom or a quantum dot (QD),
constitutes a system in which an optical nonlinearity is
present even at a single photon level [1–3]. The eigen-
energies of this coupled system form an anharmonic lad-
der, which gives rise to phenomena like photon blockade
and photon-induced tunneling [4–7]. In photon blockade,
coupling of a single photon to the system hinders the
coupling of the subsequent photons, whereas in photon-
induced tunneling, coupling of initial photons favors the
coupling of the subsequent photons. In an experiment,
the signature of blockade or tunneling is observed by mea-
suring the second order autocorrelation function g(2)(0);
a value of g(2)(0) < 1 (> 1) demonstrates the sub-
Poissonian (super-Poissonian) photon statistics of the
transmitted light and indicates that the system is in a
photon blockade (tunneling) regime.

Photon blockade can be used to route photons in a
quantum photonic circuit [8], or to mimic interacting
bosons for efficient simulation of complex quantum phase
transitions [9–11]. While most of the recent experiments
focus on photon blockade with a single two level sys-
tem and a single cavity [4–7], there have been several
theoretical proposals predicting similar effects and sub-
Poissonian light generation in systems based on multi-
level atoms in a cavity [12] and on a quantum dot in-
teracting with a pair of proximity-coupled nanocavities
[13, 14] or wave-guides [15].

The cavity quantum electrodynamic (cQED) systems
in which photon blockade can be studied depend on three
important rate quantities: the coherent coupling strength
between the atomic system and the cavity g, the cavity
field decay rate κ and the dipole decay rate γ. In all afore-
mentioned proposals, the photon blockade occurs when
the coherent interaction strength is larger than the loss
rates in the system. In fact, the limit of g/κ, g/γ → ∞
results in vanishing overlap between the energy eigen-
states of the anharmonic ladder, which in turn leads to
a perfect photon blockade (g(2)(0) = 0). In a solid state
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optical system based on a photonic-crystal cavity with an
embedded single QD as the two-level system, the condi-
tion g � γ is generally easy to satisfy. However, achiev-
ing the condition of g � κ, which requires a high quality
(Q) factor of the cavity, is generally difficult due to fab-
rication challenges. As a result, even the best photon
blockade with a QD embedded in a solid-state nanocav-
ity reported so far in the literature gives a second order
correlation g(2)(0) ∼ 0.75 [7]. Though a proposal based
on a QD interacting with a photonic molecule (a pair
of coupled cavities) predicts efficient blockade even for
cavities with easily achievable Q factors [13, 14], the sug-
gested scheme requires both individual addressability of
each cavity and a large coupling strength between the two
cavities. Since nanophotonic cavities are generally cou-
pled via spatial proximity, large coupling poses a major
challenge for achieving individual addressability [16].

In this paper, we propose a different approach for gen-
eration of strongly anti-bunched light which employs a
bimodal cavity with both of its modes coupled to a QD.
We will show that in this approach the cavity loss is actu-
ally crucial for achieving the effect, as opposed to photon
blockade systems introduced so far in which the cavity
loss plays a negative role. Specifically, the effect does not
occur in our system in the limit of g/κ → 0, which is
intuitively expected, as this is the case of an infinitely
large loss (and this is what also happens for the cases
of blockade with a single QD strongly coupled to a sin-
gle cavity and in previous photonic molecule proposals).
However, for g/κ → ∞ (zero loss, i.e., an infinite cav-
ity Q-factor), the proposed system fails to generate sub-
Poissonian light, in contrast with the single cavity with a
strongly coupled QD, where perfect photon blockade oc-
curs in such a limit. Here, we provide an intuitive expla-
nation of how a balance between the coherent QD-cavity
interaction and the decay of the cavity field is required to
achieve a strong sub-Poissonian output photon stream.
Second order auto-correlation of such a bimodal cavity
was analyzed before experimentally [17] and theoretically
[18] in the context of semiconductor micro-disk cavities,
where the right and left hand circularly polarized cavity
modes are degenerate. However, the unusual dependence
of the sub-Poissonian light on g/κ ratio was not reported
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before. Additionally, we analyze the nanophotonic plat-
form for possible experimental realization of this effect.
We note that the role of cavity loss in generation of entan-
glement between two cavity modes was previously stud-
ied in Ref. [19].

In a conventional strongly coupled QD-cavity system,
a QD interacts with a single cavity mode (Fig. 1a). In a
bimodal cavity, the QD is coupled to both cavity modes
(with photon annihilation operators a and b) although
there is no direct coupling between the two modes (Fig.
1b). Assuming the cavity modes are degenerate and the
QD is resonant with both of them, the Hamiltonian H
describing such a system (in a frame rotating at the fre-
quency of the laser driving the cavity mode a) is:

H = ∆(a†a + σ†σ + b†b) + ga(a†σ + aσ†) (1)

+ gb(b
†σ + bσ†) + E

√
κ(a+ a†)

Here, σ is the QD lowering operator, ga and gb are the
coupling strengths between the QD and the two cavity
modes,κ is the cavity field decay rate, E denotes strength
of the driving laser and ∆ is the detuning between the
driving laser and the cavity modes. The loss in the sys-
tem is incorporated in the usual way by using the Mas-
ter equation [16]. The numerical calculations are per-
formed using the integration routines provided in the
quantum optics toolbox [20]. Fig. 1c shows the trans-
mitted light collected from the driven cavity (κ〈a†a〉) for
both single (dashed line) and double mode cavities (solid
line). The cavity output is qualitatively similar for both
cases, and the split resonance is caused by coupling of
the QD to the cavity and creation of polaritons. For
the single mode cavity, the two polaritons are separated
by 2g, while for the bimodal cavity, the separation is
2
√

2g due to the presence of two modes, as will be ex-
plained later. Increased cavity transmission at ∆ = 0
for the bimodal case is also due to the presence of two
modes. However, the second-order autocorrelation func-

tions of the cavity transmission g(2)(0) = 〈a†a†aa〉
〈a†a〉2 are

strikingly different for two cases (Fig. 1d). For the single
mode cavity, one observes photon blockade (g(2)(0) < 1),
when the driving laser is tuned close to the frequency
of the polariton, ∆ ≈ ±1.5g. For the bimodal cavity,
sub-Poissonian statistics are observed at three different
detunings: ∆ ≈ ±1.8g and ∆ = 0. A slight deviation
from the polariton frequencies (for single mode cavity

∆ ≈ ±g and for bimodal cavity ∆ ≈ ±
√

2g) is due to
the losses in the system. The weak sub-Poissonian light
(g2(0) ∼ 0.95) at ∆ ≈ ±

√
2g is comparable to that ob-

served in the single mode cavity, and it arises from the
same mechanism. At ∆ = 0, the sub-Poissonian charac-
ter is much stronger (g2(0) ∼ 0.4), and it is this regime
in the bimodal cavity that we will focus on. Note that
the sub-Poissonian character observed at this frequency
of the driving laser cannot be explained by the anhar-
monic nature of the ladder alone. In fact, in the energy
structure of the coupled QD and the bimodal cavity, we
always find an available state at this empty cavity fre-

∆ /g

∆

g

g

g

a

b

-5 0 5

0.1

0.3

0.5

-5 0 5

0.5

1

1.5

Ca
vi

ty
 O

ut
pu

t
g2

(0
)

(a)

(b)

(c)

(d)
/g

single
bimodal

∆=1.8g∆=−1.8g

FIG. 1: (color online) (a) Schematic of a QD coupled to a sin-
gle mode cavity, with a coupling strength of g. (b) Schematic
of a bimodal cavity with a coupled QD. The two cavity modes
are not directly coupled to each other. However, both of them
are coupled to the QD with interaction strengths ga and gb.
(c) The cavity output κ〈a†a〉 as a function of the driving
laser detuning ∆ from the empty cavity resonance both for
a single mode cavity (dashed line) and the bimodal cavity
(solid line). The split resonance observed is due to the cou-

pled QD. (d) Second order autocorrelation g(2)(0) function
calculated for the collected output of the driven mode for
a single mode (thick dashed line) and bimodal cavity (solid
line). The green dashed line marks the Poissonian statistics
of a coherent state (always 1). For single mode cavities at
∆ ∼ ±1.5g and for bimodal cavities at ∆ ∼ ±1.8g, we ob-
serve a weakly sub-Poissonian light (g2(0) slightly less than
1). However, for bimodal cavity a strong sub-Poissonian light
is generated when ∆ = 0. For bimodal cavities we assumed
identical interaction strengths and cavity decay rates for two
modes. Parameters used for the simulations: QD-cavity in-
teraction strength g/2π = ga/2π = gb/2π = 10 GHz, cavity
field decay rate κ/2π = 20 GHz, dipole decay rate γ/2π = 1
GHz, and driving laser strength E

√
κ/2π = 1 GHz.

quency [16].
To further illustrate the difference between the pho-

ton blockade in a single mode cavity and the effect we
observe in a bimodal cavity, we perform numerical simu-
lations for a range of coupling strengths g and cavity field
decay rates κ in both systems. Using these simulations,
we obtained the values of g(2)(0) for the transmitted light
for a single mode cavity (laser tuned to one of the po-
laritons, i.e., ∆ = g) and for a double mode cavity (the
laser tuned to the bare cavity frequency, i.e., ∆ = 0).
Fig. 2a,b shows g(2)(0) as a function of g and κ. For a
single mode cavity, blockade appears at high g and low
κ, as generally expected for any photon blockade system
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FIG. 2: (color online)(a) Second order autocorrelation g(2)(0)
for the conventional photon blockade in a single mode cav-
ity as a function of the QD-cavity coupling strength g and
cavity field decay rate κ. g(2)(0) decreases with increasing
value of g/κ, as expected, as a result of reduced overlap of

energy eigenstates in the anharmonic ladder. (b) g(2)(0) for
the bimodal cavity as a function of g and κ. g2(0) is calcu-
lated for the output of mode a, i.e., for photons leaking from
the mode a. We observe that g(2)(0) → 1 (Poissonian out-
put) when g/κ→ 0 or ∞. However, we can observe very low

g(2)(0) even when the QD is not strongly coupled to the two
cavity modes (g < κ/2). (c) g2(0) as a function of the ratio
κ/g for different g showing sub-Poissonian light generation in
the bimodal cavity even in the weak coupling regime. For
all the simulations E/2π = 0.1 GHz such that the QD is not
saturated.

(Fig. 2a). However, for a bimodal cavity (when excited
at ∆ = 0), the effect disappears and the transmitted
photon output becomes Poissonian whenever g and κ are
disproportionate (i.e., g/κ→ 0 or g/κ→∞). A strongly
sub-Poissonian output can be observed from a bimodal
cavity when g and κ are comparable. Fig. 2c plots the
g2(0) as a function of the ratio κ/g for different g demon-
strating sub-Poissonian light in the bimodal cavity even
in the weak coupling regime. We stress again that this
result cannot be explained just by the anharmonicity of
the ladder of energy eigenstates. We note that for the
bimodal cavity when pumped at ∆ ≈

√
2g, the light is

sub-Poissonian only at high g and low κ, consistent with
conventional photon blockade.

To understand the origin of the strongly sub-
Poissonian light transmitted through a bimodal cavity,

we transform the system’s Hamiltonian to a different cav-
ity mode basis: α = (a+b)/

√
2 and β = (a−b)/

√
2. The

Hamiltonian H can be written (assuming ga = gb = g)
as H = H1 +H2 with

H1 = ∆(α†α+σ†σ)+
√

2g(α†σ+ασ†)+
E
√
κ√
2

(α+α†) (2)

describing a driven single mode cavity coupled to a QD
with a strength of

√
2g and

H2 = ∆β†β +
E
√
κ√
2

(β + β†) (3)

describing a driven empty cavity mode. Both cavities
are driven at the bare cavity resonances. We monitor
a = (α+β)/

√
2 which, in the transformed basis, is equiv-

alent to the output from two cavities: one with a coupled
QD (α) and the other empty (β), combined on a beam-
splitter. Fig. 3a shows the transmitted cavity output for
three different cases: cavity α alone, cavity β alone and
the combined output. Note the polariton peaks in the
combined output at ±

√
2g and increased transmission of

light at zero detuning due to the empty cavity.
The cavity transmission with a strongly coupled QD

driven at the cavity resonance is super-Poissonian due
to photon-induced tunneling [6] (α in Fig. 3b). In this
regime, the coupling of initial photons into the system is
inhibited by the absence of the dressed states at this fre-
quency. However, once the initial photon is coupled, the
probability of coupling subsequent photons is increased
as higher order manifolds in the ladder of dressed states
are reached via multiphoton processes. In our system,
as a result of broadening of the dressed states, at the
empty cavity resonance one can excite multiple higher
order manifolds. Hence, the light transmitted through a
cavity in the photon-induced tunneling regime is a super-
position of Fock states with small photon numbers and
a strong presence of the vacuum state. As a result, the
photon statistics of this light is super-Poissonian [6]. On
the other hand, the empty cavity transmission (β in Fig.
3 b) is a purely Poissonian coherent state. When the
outputs of these two cavities are combined on a beam-
splitter (a = (α + β)/

√
2 in Fig. 3 b), the output shows

sub-Poissonian character. We note that similar inter-
ference effect was previously reported in [17]. However,
for efficient generation of sub-Poissonian light, one needs
comparable transmitted light intensity from both cavi-
ties, which calls for a balance between the cavity loss
κ and the QD-cavity nonlinear interaction strength g.
Using this effective model, the somewhat unusual de-
pendence of g(2)(0) on g and κ can now be explained.
When g/κ→ 0, the coupled system is linear and both of
the equivalent cavities transmit just coherent light. On
the other hand, although photon-induced tunneling does
happen in the limit g/κ → ∞, the amount of super-
Poissonian light transmitted through the cavity α is so
small (as the dressed states separation in the ladder is
so large that it is impossible to couple photons at ener-
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FIG. 3: (color online) (a) Cavity output for an empty cavity
β and another cavity α coupled to a QD with a coupling
strength of

√
2g. The combined output of these two replicates

the output from the bimodal cavity a (Fig. 1). (b) g(2)(0)
for these three cases: the empty cavity β gives Poissonian
light; the cavity α with coupled QD gives super-Poissonian
light due to photo-induced tunneling [6] (the black curve goes
to infinity at ∆ = 0); the combined output a provides sub-
Poissonian light. Parameters for the simulation: g/2π = 10
GHz, κ/2π = 20 GHz, γ/2π = 1 GHz and E

√
κ/2π = 1 GHz.

gies between them) that its interference with the coher-
ent light from the empty cavity β will still result in light
with Poissonian statistics. To generate enough super-
Poissonian light via photon-induced tunneling in cavity
(α) which can affect the coherent light from the empty
cavity (β), comparable values of dot-cavity interaction
strength g and cavity decay rate κ are required.

Finally, we discuss the nanophotonic platform that can
be used to implement our proposal. A photonic-crystal
cavity with C6 symmetry can support two degenerate
cavity modes with orthogonal polarizations [21]. The two
cavity modes are thus not coupled to each other (since
their polarizations are orthogonal), and can be easily ad-
dressed independently by a laser. At the same time, a
QD can be coupled to both cavity modes, if it is placed
spatially at the center of the cavity with its dipole mo-
ment aligned at a 45o-angle to the polarizations of both
modes.

Two potential issues can arise from fabrication im-
perfections in a realistic system: a frequency difference
∆ab between the two cavity modes and a mismatch be-
tween the QD coupling strengths ga and gb to each mode.
These issues can be seen in the preliminary experimen-
tal results shown in the Supplement [16]. To examine
the robustness of the proposed scheme against these im-
perfections, we plot their effects on g(2)(0) in Fig. 4.
Fig. 4a shows the numerically calculated g(2)(0) as a
function of the detuning between the two cavity modes
∆ab. We observe that the sub-Poissonian character of
the transmitted light vanishes when ∆ab ≥ κ. This neg-
ative effect of frequency difference of the two modes can
be balanced simply by increasing the cavity decay rate
κ, i.e., by lowering the cavity quality factor. This re-
sults in an increase of the frequency overlap between the
two modes and makes the degeneracy of the two modes
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FIG. 4: (color online)(a) Second order autocorrelation g(2)(0)
of the cavity transmission, as a function of the relative detun-
ing ∆ab between two cavity modes for different cavity field
decay rates κ = κa = κb. The quality of the sub-Poissonian
photon stream in the transmitted output degrades with in-
creasing detuning, which can be compensated by increasing
κ, thereby maintaining low g(2)(0). For these simulations we
assume ga/2π = gb/2π = 10 GHz and E/2π = 0.1 GHz. (b)

Second order autocorrelation g(2)(0) of the cavity transmis-
sion as a function of the ratio gb/ga for different ga. The trans-
mitted light behaves like a coherent state at high gb/ga ratio
and like a super-Poissonian state generated via photo-induced
tunneling at low gb/ga ratio. In between, when gb/ga ∼ 1, we
observe strong sub-Poissonian output. Here, κ/2π = 20 GHz
for both cavity modes.

more robust. The effects of this improvement outweigh
the penalty incurred on the system’s performance by re-
ducing the g/κ ratio, and we can see in Fig. 4a that a
strong sub-Poissonian output can still be produced. Ad-
ditionally, we analyze the performance of the system as
a function of the ratio gb/ga, where gb and ga are the
QD coupling strengths with the cavity modes a and b
assuming mode a is coherently driven. It can be shown
from the effective model that at a large gb/ga ratio, we
essentially drive only the empty cavity β and the photon
statistics is Poissonian (see Supplement [16]). Similarly,
at a small gb/ga ratio, we drive only the cavity α with
coupled QD and the photon statistics is super-Poissonian
due to photo-induced tunneling [16]. When gb/ga ∼ 1,
we meet the optimal condition of interference between
the coherent state and super-Poissonian state to gener-
ate light with sub-Poissonian photon statistics. This can
be seen in the numerical simulations of g(2)(0) as a func-
tion of gb/ga in Fig. 4b. The system performance is
insensitive to the actual value of ga for a relatively large
range, as long as the ratio gb/ga is maintained. At the
same time, we can see that the lowest value of g2(0) is
achieved for the ratio of coupling strengths gb/ga ∼ 0.8.
We note that this ratio depends on the driving strength
of the laser, and can be related to the requirement for
similar transmission from the cavities α and β.

In summary, we introduced a scheme for generation
of sub-Poissonian light in a cQED system with a bi-
modal cavity and provided a theoretical and numeri-
cal analysis of its performance. For similar system pa-
rameters, the bimodal cavity can provide a much bet-
ter sub-Poissonian character of the transmitted photon
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stream (g(2)(0) ∼ 0.1) compared to a single mode cavity
(g(2)(0) ∼ 0.9). We also introduce an equivalent model
which explains the effect as an interference between a
coherent state and a super-Poissonian state generated
by photon-induced tunneling, and a balance between the
nonlinearity and the loss of the system is required to ob-
serve it. Moreover, the effect disappears in the absence of

the cavity loss (g/κ → ∞). This interplay between loss
and nonlinearity has great potential to be exploited for
the design of realistic coupled cavity arrays for efficient
quantum simulation.
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