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Abstract

Two 4He atoms form a diatomic molecule with significant vibrational wave function amplitude

at interatomic separations R > 100 Å where the retardation switches the London R−6 decay of the

potential to the Casimir-Polder (CP) R−7 form. It has been assumed that this effect of retardation

on the long-range part of the potential is responsible for the 2 Å (4%) increase of the bond length

〈R 〉 of 4He2. We show that 〈R 〉 is, unexpectedly, insensitive to the potential at R > 20 Å and its

increase is due to quantum electrodynamics effects computed by us from expressions valid at short

R–beyond the validity range of CP theory–that seamlessly extend this theory to distances relevant

for properties of long molecules.
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The perplexing observation made for colloidal systems that the intermolecular potential

vanishes with the separation R as R−7 rather than as R−6 expected from conventional

London’s theory was explained in 1948 by Casimir and Polder [1] in an early application of

quantum electrodynamics (QED) as due to the retardation of electromagnetic interactions

at very large R. The so-called Casimir force corresponding to the R−7 decay of the potential

shows up in only a few physical systems beyond colloids. One of these system was believed to

be the single bound state of the 4He2 molecule, whose very existence was controversial until

mid 1990s, but which is now the subject of numerous experiments, see, e.g., Refs. [2–4].

4He2 is a model system [5] for similar ultra-long diatomic molecules produced in Bose-

Einstein condensates and Fermi gases [6, 7]. The effect of retardation on the size of 4He2,

as measured by the mean interatomic distance 〈R〉, was computed for the first time by

Luo et al. [8] in 1993 and found to increase 〈R〉 by 5.2%. These authors concluded that it

is the transition of the interaction potential from the R−6 to the R−7 dependence, which

is essentially completed at distances of the order of 500 Å, and the unusually large long-

range tail of the vibrational wave function which make the retardation significantly influence

the properties of the bound state of 4He2. Luo et al. also found that the inclusion of the

retardation potential at the distances corresponding to the van der Waals minimum (about

3 Å) leads to negligible changes of the properties of 4He2. According to Spruch [9] “the

non-negligible probability of finding [two helium atoms] at R ∼ 100 Å leads to remarkably

large retardation effects of about 10% on the binding energy and about 5% on the mean

separation”. This understanding of the phenomenon became generally accepted.

Shortly after the discovery of 4He2, its size was measured by Luo et al. [10], but the

experimental uncertainty of 16% was too large to allow conclusions about retardation effects.

Later, a more accurate measurement by Grisenti et al. [11] gave 〈R〉 = 52 ± 4 Å, i.e., with

a 7.7% error. Several groups performed increasingly accurate calculations of 〈R〉, with the

current best value [12] equal to 47.1 ± 0.5 Å, in fairly good agreement with experiment.

Since the neglect of the retardation effect would increase the discrepancy with experiment

by about 2 Å, one may claim that such a comparison of theory with experiment represents

an observation of the Casimir-Polder retardation in the 4He2 molecule.

According to Casimir and Polder [1], the retarded interatomic potential is given by

VCP(R) = −
h̄

πR6

∫ ∞

0
[αd(iω)]2 e−2ωR/c P (ωR/c) dω, (1)
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where αd(iω) is the dipole polarizability of helium atom at the imaginary frequency iω, c is

the speed of light, and P (x) = x4 + 2 x3 + 5 x2 + 6 x + 3. At small R, VCP(R) behaves as

−C6R
−6 + O(α2), where α = 1/137.036 is the fine-structure constant and C6 is the leading

van der Waals coefficient in the nonrelativistic Born-Oppenheimer (BO) approximation (we

use the convention that this coefficient is positive). Therefore, the appropriate retardation

correction to the BO interaction potential VBO(R) is

δV BO
ret (R) = VCP(R) + C6R

−6. (2)

This retardation correction is equivalent to the replacement of the −C6R
−6 component of

the nonrelativistic potential by −g(R)C6R
−6, where g(R) is the retardation factor [12, 13]

g(R) = −VCP(R)
R6

C6

(3)

[note, that in Ref. [13] the retardation factor of Eq. (3) is denoted by 1−f(R)]. The decreas-

ing value of g(R), as it varies from 1 to 0 when R varies from 0 to infinity, corresponds to the

increasing importance of the retardation effect. It is the effect of g(R), or equivalently, the

addition of δV BO
ret (R) to VBO(R), which results in the 2.15 Å (or 4.7%) increase of the dimer

size [12]. To illustrate the long-range properties of 4He2, in Fig. 1 we plot the retardation

factor g(R) and the vibrational wave function χ(R). As one can see, the vibrational wave

function extends to distances where g(R) differs substantially from unity. For example, at

R = 100 Å the vibrational wave function amplitude is 34% of its peak value, whereas the

value of g(R) is 0.79. Clearly, the retardation effect is already significant between 50 and

250 Å, where the wave function has still a nonegligible amplitude. We found that about

50% of the value of 〈R〉 comes from R > 70 Å and about 10% from R > 170 Å.

Figure 1 seems to support the interpretation of Luo et al. [8] and Spruch [9]. However,

when we attempted to analyze the relations between magnitudes of the adiabatic, relativistic,

QED, and retardation contributions to the potential and the corresponding changes of 〈R〉,

we found that a satisfactory correlation could be achieved only when taking into account

the region of relatively small R, much below 50 Å. To make sure that indeed there is no

sensitivity of the bound state properties to the region where the potential is significantly

retarded, we smoothly damped the interaction potential to zero such that the damping is

completed between R = Rd − 1 Å and R = Rd + 1 Å. The dependence of 〈R〉 and of the

dissociation energy D0 on Rd is shown in Fig. 2. It is seen that the dimer properties do

3



not depend on V (R) at the distances where the Casimir force is significant. For example,

setting Rd = 20 Å gives 〈R〉 = 47.19 Å. This value differs from the exact one by only

0.2%, i.e., much less than the retardation correction computed in Ref. [8]. When Rd = 30

Å, this difference reduces to 0.02%. We also found that the asymptotic form of the wave

function ∼ e−
√
2µD0R/h̄, where µ is the reduced mass of 4He2, sets in immediately past the

classical outer turning point (equal to 13.6 Å) and remains practically independent of Rd

when Rd > 20 Å. This shows that the large amplitudes of the wave function in the classically

forbidden region remain practically unchanged if the values of the potential are replaced by

zero starting at about 20 Å. Since the values of the potential for R larger than about 20 Å

are completely irrelevant for the properties of the bound state, the interpretation of Luo et

al. [8] has to be revised.

One problem with the sensitivity of the bound state to only relatively small values of

R is that one may question the validity of VCP(R) in this region. The CP potential was

obtained in the dipole approximation and neglecting charge overlap (penetration) effects.

In fact, the issue whether δV BO
ret (R) should be added for all R or only starting from some

value where the charge overlap effects can be assumed to be negligible (for example 5 Å)

has been controversial [14]. These questions can be resolved using the relativistic and QED

components of the potential computed in Ref. [12]. The total potential from that work is

represented as

V +ret(R) = V (R) + δVret(R), (4)

V (R) = VBO(R) + Vad(R) + Vrel(R) + VQED(R), (5)

where the consecutive terms in Eq. (5) are the BO, adiabatic, α2 relativistic, and α3 QED

components of the potential computed accurately from formulas valid at any R (without the

dipole approximation and with full account of charge overlap effects). The term δVret(R) in

Eq. (4) is the residual retardation correction, defined as the sum of αn, n ≥ 4, contributions

to VCP(R).

Let us look more closely at the retardation correction δV BO
ret (R), Eq. (2), at small R. At

these distances, δV BO
ret (R) is very well represented by the first two terms of its expansion in

powers of α

δV BO
ret (R) = −C4 R

−4 − C3R
−3 + O(α4) (6)

(the definitions of C4 and C3 include the α2 and α3 factors, respectively). Although for

4



very large R (hundreds of angstroms), the correction δV BO
ret (R) is very accurate—bringing

about the change from VBO(R) to VCP(R) and producing the correct R−7 decay of the

potential—it is clear that at short range the first two terms of Eq. (6) may represent a

poor approximation to the sum of the exact α2 and α3 contributions to the potential. A

much better approximation at small R is obtained if −C4R
−4 and −C3R

−3 are replaced

by the Breit interaction [15] component VBr(R) of Vrel(R) and by the Araki-Sucher [16,

17] contribution VAS(R) to VQED(R), respectively. These contributions to the potential,

well defined for all distances (see Ref. [18] for specific expressions and for computational

algorithms), result from the exchange of transverse virtual photons and can be viewed as

retardation effects. With the replacements mentioned above, one may extend the concept

of the retardation correction to smaller R by defining a “short-range” correction of the form

δV BO
sr−ret(R) = δV BO

ret (R) + C4R
−4 + C3R

−3 + VBr(R) + VAS(R). (7)

One can show [19, 20] that −C4R
−4 and −C3R

−3 are the leading terms in the asymptotic,

large-R expansion of VBr(R) and VAS(R), respectively, so δV BO
sr−ret(R) does not contain any

unphysical R−4 and R−3 long-range contributions to the potential. One can also show that

the unphysical long-range R−5 contribution to δV BO
sr−ret(R), originating from VAS(R), can be

troublesome, i.e., larger than VCP(R), only at R > 0.526/α2 Å = 0.987 × 104 Å [18]. This

R−5 contribution can be eliminated using the theory developed by Pachucki [20].

We can also relate the retarded potential VBO(R) + δV BO
sr−ret(R) of Eq. (7) to the V +ret(R)

potential of Eq. (4), the most accurate representation of the interatomic potential available

at the present time. The former potential can be also written as

VBO(R) + δV BO
sr−ret(R) = VBO(R) + VBr(R) + VAS(R) + δVret(R), (8)

where

δVret(R) = VCP(R) + C6R
−6 + C4R

−4 + C3R
−3 (9)

is the retardation correction used in Eq. (4). Thus, the additional terms included in V +ret(R)

are Vad(R) and the relativistic and QED terms other than VBr(R) and VAS(R). V +ret(R) is

accurate through α3 at short and intermediate range. The α4R−2 contribution included in

δVret(R) may at small R be a poor approximation to the exact α4 QED correction to the

potential, but at such distances the α4 terms are completely negligible relative to Vad(R) or

Vrel(R).
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The terms entering Eq. (7) are shown in Fig. 3. As one can see, −C4 R
−4 and −C3R

−3

are very good approximations to VBr(R) and VAS(R) even for R as small as the van der

Waals minimum distance Re of 2.96 Å. This resolves the controversy [14] mentioned above

in favor of adding δV BO
ret (R) for all R. VBr(R) + VAS(R) lies almost everywhere above the

corresponding asymptotic approximation, making the potential slightly shallower. This leads

to an increase of 〈R〉 by about 0.3 Å compared to the use of VBO(R) + δV BO
ret (R).

The BO potential, as well as the leading terms of δV BO
sr−ret(R), are shown in Fig. 4 in

the range between 2 and 5 Å. For most of this range, the potential VBr(R) constitutes only

about 0.1% of the magnitude of VBO(R), and VAS(R) is still smaller. The only region where

δV BO
sr−ret(R) becomes relatively important is around R = 2.64 Å, where VBO(R) crosses zero,

but it is too narrow a range of R to have a large influence on the wave function. The relative

importance of δV BO
sr−ret(R) increases to about 2.2% as R increases to 20 Å, the upper limit of

the sensitive range for the vibrational wave function. Thus, again surprisingly, δV BO
sr−ret(R) in

the range 2-20 Å may seem to be too small to account for the 4.7% increase of 〈R〉. To check

this issue, we have multiplied VBO(R) by 0.999 to make it shallower by the amount of the

retardation correction in the region of the potential well. Such a scaled VBO(R) recovered

about two thirds of the retardation effect, showing that small changes in the potential result

indeed in disproportionally larger changes in the value of 〈R〉.

The α4 retardation correction δVret(R) of Eq. (9) is negligible up to about 50 Å, but

it obviously becomes dominant for much larger distances due to its R−3 decay. Although

this correction is completely unimportant for the properties of the bound state of 4He2,

it becomes relevant for some thermophysical properties of bulk helium. In particular, the

second virial coefficient and the acoustic virial coefficient diverge [18] if the V (R) potential

of Eq. (5) is used in quantum scattering calculations (due to its unphysical R−3 asymptotics,

analogously to the well-known divergence of the S-wave scattering length [21]). Of course,

these virials can be calculated without difficulty [18] after adding the retardation correction

δVret(R). In contrast, the viscosity calculations converge with no problems [18] without the

δVret(R) correction.

In conclusion, we have shown that it is indeed the retardation effect that increases the

size of the helium dimer bound state by about 5%. However, it is not the retardation

in the region of 50-500 Å where the Casimir-Polder effect is significant or dominates, but

the retardation effects at the van der Waals minimum and at intermediate distances up to
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slightly above the classical outer turning point. These effects, due to the Breit and Araki-

Sucher interactions, change the potential by only 0.1% to 2% in this region but lead to much

larger changes in the dimer properties.
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FIG. 1. The vibrational wave function of the helium dimer χ(R) (left axis), normalized such that

χ(R)2 is the probability density of finding atoms at the distance R, and the retardation factor g(R)

showing the increasing importance of the retardation effect at large R (right axis).
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The vertical line marks the position of the classical outer turning point.

10



10-8

10-6

10-4

10-2

100

102

 2  10  100

R [Å]
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