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Majorana fermions were envisioned by E. Majorana in 1935 to describe neutrinos. Recently
it has been shown that they can be realized even in a class of electron-doped semiconductors, on
which ordinary s-wave superconductivity is proximity induced, provided the time reversal symmetry
is broken by an external Zeeman field above a threshold. Here we show that in a hole-doped
semiconductor nanowire the threshold Zeeman field for Majorana fermions can be very small for some
magic values of the hole density. In contrast to the electron-doped systems, smaller Zeeman fields
and much stronger spin-orbit coupling and effective mass of holes allow the hole-doped systems to
support Majorana fermions in a parameter regime which is routinely realized in current experiments.

PACS numbers: 74.78.-w, 03.67.Lx, 71.10.Pm, 74.45.+c

Recently some exotic condensed matter systems, such
as the Pfaffian states in fractional quantum Hall systems
[1–4], chiral p-wave superconductors/superfluids [5–9],
etc. [10, 11], have been proposed as systems support-
ing quasiparticles non-Abelian exchange statistics [12].
These systems allow a special type of quasiparticles called
Majorana fermions which are their own anti-particles and
possess the non-Abelian statistics. Due to the funda-
mental difference of Majorana fermions from any other
known quantum particles in nature, the emergence of
these particles in solid state systems would in itself be
an extraordinary phenomenon. Their potential use in
fault-tolerant topological quantum computation (TQC)
[12] makes their realization in controllable solid state sys-
tems even more significant.
It has been shown recently [13–18] that an electron-

doped semiconducting thin film or nanowire with a siz-
able spin-orbit coupling can host, under suitable condi-
tions, Majorana fermion excitations localized near de-
fects. This proposal followed on an earlier similar pro-
posal in the context of cold atomic systems [19]. When
the film or the nanowire is in the presence of a Zeeman
splitting Vz (with Landé factor g∗e) and an s-wave su-
perconducting pair potential ∆, which can be proximity
induced by a nearby superconductor, the system enters
into a topological superconducting (TS) state for

V 2
z > ∆2 + µ2, Vz = g∗eµBB/2. (1)

Here µ is the chemical potential in the semiconductor.
Despite the theoretical success, the above requirement
for the TS state in an electron-doped nanowire leads to
two obvious experimental challenges: a low electron den-
sity and a high magnetic field. For a small carrier density
a nanowire tends to become insulating due to the strong
disorder-induced fluctuations of the chemical potential.
A high magnetic field, on the other hand, can be detri-
mental to pairing as well as s-wave proximity effect itself.
In this Letter we show that a hole-doped semiconductor

nanowire can solve all these problems encountered in the

electron-doped systems. The hole-doped nanowire is very
different in many respects from its electron-doped coun-
terpart due to its different band structure and the value of
the effective spin of the carriers. For some “magic” values
of the carrier (hole) density the threshold Zeeman split-
ting for the TS states and Majorana fermions can become
very small, therefore the constraint on the carrier density
as given in Eq. (1) is absent for the hole-doped nanowires.
Furthermore, the effective mass and spin-orbit coupling
in the p-type valence band holes are much larger than
electrons, which leads to a larger Fermi vector kF . This
larger kF leads to a larger required carrier density (∼ 106

cm−1) for the TS state, which, remarkably, is now rou-

tinely achieved in many experiments [20–22]. The large
carrier density provides strong screening of the disorder
potentials, leading to much smaller fluctuations of the
chemical potential [23] in the nanowire. Furthermore, the
small ratio between the Zeeman coupling and the spin-
orbit energy (orders of magnitude smaller than that in
the electron-doped systems) leads to a small carrier mo-
bility requirement for the hole-doped TS state (3 order of
magnitude smaller than that for the electron-doped TS
state) [24]. Let us also point out that the superconduct-
ing proximity effect on a hole-doped nanowire has been
observed in recent experiments [22]. It seems therefore
that a Majorana-carrying TS state is tantalizingly close
to experimental reach in a hole-doped nanowire.
Set-up and Hamiltonian: The experimental setup is

illustrated in Fig. 1a, where a hole-doped semiconductor
nanowire is placed on top of an s-wave superconductor.
The single particle Hamiltonian of holes is described by
the four-band Luttinger model [25] (henceforth we set
~ = 1, and m = −1),

HL = (
γ1
2
+
5γ2
4

)∇2−γ2(∇·J)2−iα(J×∇)· ẑ+VzJz−µ,
(2)

where α is the Rashba spin-orbit coupling, and the fourth
term is the Zeeman field Vz = g∗hµBB generated by the
external magnetic field. J is the total angular momentum
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FIG. 1: (a) Schematic plot of the experimental setup. (b)
The valence band structure of 1D hole-doped nanowire with
a Zeeman field. Dashed and solid lines: heavy hole bands.
Dash-dotted and dotted lines: light hole bands. Thick red line
(amplified as shadow in inset): the regime for the topological
superconducting state. The parameters are for a hole-doped
InAs nanowire with γ1 = 20, γ2 = 8.5. α = 3.3 × 105 m/s,
Vz = 1.5 meV, Lz = 14 nm, Ly = 10 nm.

operator for a spin-3/2 hole, γ1 and γ2 are the Luttinger
parameters. Note that here the relation between Vz and
B differs from Eq. (1) by a factor 1/2 because we use the
spin-3/2 matrix Jz, instead of the Pauli matrix which was
used for Eq. (1) [13] (thus the required B for the same
Vz is smaller by a factor 1/2).
To simplify the calculations we assume a rectangular

cross-section of the nanowire with the widths Ly and
Lz. The strong confinement along the y and z direc-
tions makes the energy levels quantized on these axes.
To illustrate the emergence of the Majorana fermions,
we first consider only the lowest energy state along the y
and z directions, on which the original 3D Hamiltonian
(2) can be projected to an effective 1D form

H1(x) =
(

γ1/2 + 5γ2/4− γ2J
2
x

)

∂2x + π2γ2J
2
y/L

2
y

+π2γ2J
2
z /L

2
z + iαJy∂x + VzJz − ξ − µ̄, (3)

where ξ = 5γ2π
2
(

L−2
y + L−2

z

)

/4, and the shifted chemi-

cal potential µ̄ = µ+ γ1π
2
(

L−2
y + L−2

z

)

/2.
In Fig. 1b, we plot the energy spectrum εS of the

Hamiltonian (3). There are two heavy hole and two light
hole bands. If µ lies in the shaded region, it intercepts
only one Fermi surface. An odd number of Fermi surfaces
implies a breakdown of the fermion doubling theorem
(due, in this case, to the Zeeman splitting), which yields,
in the presence of a superconducting pair potential, the
required TS state for Majorana fermions [10]. The posi-
tion and width of the shaded region (the TS state) are
determined by the Hamiltonian (3) at k = 0 (depends
on the parameters γ1, γ2, Ly, Lz) and Vz , respectively.
The large effective mass and strong spin-orbit coupling

of the holes lead to a high density n =
∫ kF

0
dk/2π ∼ 106

cm−1 of holes in the TS state, which is routinely realized
in nanowire experiments [20–22].
The superconducting pair potential can be induced

in the hole-doped nanowire through the proximity con-
tact with an s-wave superconductor (Fig. 1a), as demon-

strated in experiments [22]. This yields the Hamiltonian,

Hsc =
∑

mJ

∫

d3r∆smJ
(r) ψ̂†

mJ
ψ̂†
−mJ

+H.c., (4)

where ψ̂†
mJ

are the creation operators for holes with the
angular momentum mJ = 1

2
, 3
2
and ∆smJ

(r) is the prox-
imity induced pair potential. The form of the pairing
Hamiltonian is dictated by the fact that ∆smJ

couples
particles with mJ with particles with −mJ , and should
be determined through the microscopic theory of the
proximity effect [26].
Taking account of the spin-3/2 and the particle-

hole degrees of freedom in the superconductor, the
Bogoliubov-de-Gennes (BdG) Hamiltonian can be writ-
ten as an 8× 8 matrix

ĤBdG =

(

H1(x) ∆S(x)
∆∗

S(x) −Υ†H∗
1 (x)Υ

)

(5)

in the Nambu spinor basis Φ̂(x) =
(

ψ̂(x),Υψ̂†(x)
)T

with Υ = i(I2 ⊗ σx)τy (I2 is the 2 × 2 unit
matrix),∆S(x) = diag

(

∆s3/2,∆s1/2,∆s1/2,∆s3/2

)

, and

ψ̂(x) = (ψ̂ 3

2

(x), ψ̂ 1

2

(x), ψ̂− 1

2

(x), ψ̂− 3

2

(x)).
Parameter space for the topological state: In a

1D nanowire, the parameter regime for the Majorana
fermions can be determined by the topological index M
[27, 28] defined as,

M = sgn [Pf {Γ(0)}] sgn [Pf {Γ(π/a)}] . (6)

Here Pf represents the Pfaffian of the anti-symmetric
matrix Γ(k) = −iHBdG(k)(ςy ⊗ Υ), ςy is the Pauli ma-
trix, HBdG(k) is the corresponding BdG Hamiltonian in
the momentum space (−i∂x → k), and a is the lattice
constant. M = −1 (+1) corresponds to the topologi-
cally nontrivial (trivial) states with (without) Majorana
fermions. Using the fact that Γ(k) is an anti-symmetric
matrix that can be diagonalized by a lower triangular
matrix [29], we find

Pf {Γ(k)} = Pf {∆SΥ}Pf
{

Υ∆S +HT
1 (k)Υ∆−1

S H1 (k)
}

.
(7)

In the continuous limit k = π/a→ ∞, the k2 terms in
H1 (k) dominates and all other terms in Γ(k) can be ne-
glected, yielding sgn[Pf{Γ(k)}] = sgn[det (H1 (k))] = 1,
therefore M is solely determined by the sign of Pf{Γ(0)}.
Pf{Γ(0)} can be derived analytically from Eq. (7), yield-
ing M = sgn[F ], where

F = f0 − f1V
2
z + 9V 4

z /16, (8)

f0 = (µ̄2 + ∆s3/2∆s1/2 − β2
1 − β2

2)
2 +

[(∆s3/2 − ∆s1/2)µ̄ + β1(∆s3/2 + ∆s1/2)]
2, f1 =

[

10µ̄2 + 10β2
1 + 16β1µ̄+ 9∆2

s1/2 +∆2
s3/2 − 6β2

2

]

/4,

β1 = π2γ2
(

L−2
z − L−2

y /2
)

, β2 =
√
3π2γ2L

−2
y /2. Since
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FIG. 2: (a) Plot of the phase boundary (F = 0) between
topological and non-topological states for different µ, V c

z and
η. ∆s1/2 = 1 meV, β2 = 55.4 meV (corresponding to Ly = 10

nm), β1 = (1 − η)/(2
√

|η|)
√

β2

2
− η∆2

s1/2
. The color region

represents the TS state with M= −1. Different colors corre-
spond to different V c

z . (b) Plot of the minigap Eg versus ∆.
µ = −50.9 meV, Vz = 1.5 meV, Ly ≈ 9 nm and Lz ≈ 15 nm.

M changes sign when F changes sign, F = 0 defines the
phase boundary between the topologically trivial and
nontrivial states.
When the ratio η = ∆s3/2/∆s1/2 ≥ ∆2

s3/2/β
2
2 , there

exists a magic chemical potential µ̄0 = η+1

4|η|

√

ηβ2
2 −∆2

s3/2

in the heavy hole band such that f0 = 0, where β1 =
(1− η) µ̄0/ (1 + η). For f0 = 0, F < 0 and Majorana
fermions exist even for a vanishingly small Vz. Because
β2
2 >>

∣

∣∆s3/2∆s1/2

∣

∣ with the strong confinement, η ≥
∆2

s3/2/β
2
2 is equivalent to that ∆s3/2 and ∆s1/2 have the

same sign, in which case the threshold V c
z for the TS

state vanishes. When ∆s3/2 and ∆s1/2 have different
signs, V c

z becomes nonzero, but is still much smaller than
that for the electron-doped semiconductors. Therefore
the relative signs of the pair potentials should not matter
in realistic experiments because a reasonable Vz is always
needed to generate a sizable chemical potential region for
the TS state. In Fig. 2, we plot the boundary F = 0
between topologically trivial and non-trivial states for
different µ, V c

z and η. The TS states for a fixed V c
z

are embraced by two lines with the same color for the
corresponding V c

z . For instance, for η = 0.15 and V c
z = 1

meV, Fig. 2 shows that the TS state exists in the region
µ1 < µ < µ2 with µ1 = −103.3 meV and µ2 = −100.8
meV. Clearly, the Vz = 0 line (the center blue line) exists
for η > 0, but vanishes for η < 0. When η → 0+, µ̄0 →
−∞.
The vanishingly small V c

z for the TS state at η > 0
may also be understood by projecting the four band
Luttinger model in Eq. (3) to an effective two heavy
hole band model because of the large energy splitting
between the heavy and light hole bands. The resulting
two band model is generally very complicated for finite
kx and Vz . However, because the Pfaffian is determined
by the Hamiltonian at k = 0 and we are interested in
the TS state with vanishingly small Vz , we can do the

band projection at Vz = 0 and around kx = 0, lead-
ing to an effective pairing ∆eff =

(

∆s3/2 − κ∆s1/2

)

/κ

and chemical potential µ̄eff = µ̄ −
√

β2
1 + β2

2 , with

κ =
(

√

β2
1/β

2
2 + 1− β1/β2

)2

. When η > 0, ∆eff may

vanish by choosing β1/β2 = (1− η) /2
√
η, therefore V c

z

also vanishes when µ̄eff = 0. While when η < 0, ∆eff

is always finite and there is a minimum V c
z based on Eq.

(1) for the two-band model. Note that the zero ∆eff at
kx = 0 and Vz = 0 does not imply the zero ∆ at a finite
Vz and kx. For a large kx, the coupling between heavy
and light holes becomes important and the mini-gap is
finite for a large Vz even at the magic µ0 (see Fig. 3b).

Henceforth, we consider two representative cases to
further illustrate our results: (I) ∆s3/2 = ∆s1/2 = ∆
and (II) ∆s3/2 = −∆s1/2 = ∆. The corresponding topo-
logical region is plotted in Fig. 3a. In the case (I), the
TS states exist in the region |µ̄ − µ̄0| . |Vz |/2 for both
positive and negative Vz . The transition at Vz = 0 (at
which the superconductor is gapless and non-topological)
is a quantum transition at which neither the symmetry
of the system nor the topological properties change with
Vz. Note that the system crosses the phase transition
boundary lines twice when Vz changes from −∞ to +∞
for a fixed µ̄, except at µ̄0. At the phase boundary, the
quasiparticle energy gap closes and the superconductor
becomes gapless. At µ̄0, the two lines of the phase bound-
ary merge at Vz = 0, therefore the superconductor is
gapped and topological for all Vz except at Vz = 0.

In the case (II), the threshold V c
z ≈ p∆ with p =

2
[

1 + 2
(

1 + β2
2/β

2
1

)−1/2
]−1

(see Figs. 3a and 3c). For

instance, for hole-doped InAs nanowires (with a typical
g∗h = 35 [30]) with Nb as the adjacent superconductor
(∆ ≃ 1 meV), the required magnetic field B is ∼ 0.35 T,
which is about 1/3 of the corresponding B for electron-
doped InAs nanowires. Therefore, irrespective of the rel-
ative sign of ∆s3/2 and ∆s1/2 the threshold B for the TS
state in the hole-doped case is much smaller than that
in the electron-doped case. The fact that the Majorana
fermions can be observed even with a small magnetic field
opens the possibility of using a wide range of semicon-
ductor materials with only small g∗h factors [21, 22].

To further confirm the existence of the Majorana
fermions in the above parameter regime, we also numer-
ically solve the BdG equations (5) and obtain the energy
spectrum. The Majorana fermion corresponds to a zero
energy eigenvalue in the BdG spectrum. Henceforth, we
present our results only for the case (I), but have con-
firmed that the results for the case (II) are similar. In
Fig. 3b, we plot the ground and the first excited state
energies. The ground state energy becomes zero in the
region µc2 < µ < µc1 , where M = −1 (Fig. 3a). The
solution of the BdG equation also yields the minimum
energy gap (minigap) above the zero energy states. At
this gap and above there are other, finite-energy, states
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FIG. 3: The parameter regime for Majorana fermions. (a,b)
and (c,d) correspond to the single and two band models. Ly ≈
10 nm and Lz ≈ 14 nm for (b) and case (I) in (a). Ly ≈
9 nm and Lz ≈ 15 nm for (d) and case (I) in (c). Ly ≈
14.2 nm, Lz ≈ 9.5 nm for case (II) in (a) and (c). (a,c) are
obtained from M = −1 (the filled regions). The widths of the
nanowire are chosen to obtain a small V c

z for each case. (c,d)
are obtained from solving the BdG equation with Vz = 1.5
meV. ∆ = 1 meV. The dashed lines in (b,d) give the minigap.

localized at the end points of the wire. The minigap
therefore protects the Majorana states from finite tem-
perature thermal effects. We see that the minigap is of
the same order of ∆ ≃ 1 meV, which means that the
Majorana fermion physics can be accessed at the exper-
imentally accessible temperatures T < 10 K.

Effects of multiple confinement bands: In a real-
istic experiment, multiple confinement energy bands
along the y and z directions need be taken into
account [18, 31] because they are mixed with each
other by the large spin-orbit coupling. Considering
the lowest n confinement bands, the BdG Hamilto-
nian can be written as an 8n × 8n matrix similar
as Eq. (5) with H1 (x) replaced with Hn(x) =
∫

dydz(φ∗1(y, z), ...φ
∗
n(y, z))

THL(φ1(y, z), ...φn(y, z)),
and Υ with Υn = In ⊗ Υ. Here φi(y, z)
is the wavefunction on the i-th band in the
yz plane. The Nambu spinor basis becomes
Ψ̂(x) = (ψ̂1(x), · · · , ψ̂n(x),Υψ̂

†
1(x), · · · ,Υψ̂†

n(x))
T

with ψ̂i(x) = (ψ̂ 3

2
i(x), ψ̂ 1

2
i(x), ψ̂− 1

2
i(x), ψ̂− 3

2
i(x))

T

on the i-th band. We also assume there is no
superconducting pairing between holes at differ-
ent confinement bands, therefore ∆Sn = In ⊗ ∆S .
The topological index is found to be M =
sgn[Pf{∆SnΥn}Pf

{

Υn∆Sn +HT
n (k)Υn∆

−1

SnHn (k)
}

].

Here we consider only the lowest two relevant energy
bands (ly = 1 and 2, lz = 1). In Fig. 3c, we plot

the corresponding parameter regime for the TS state,
which now has some quantitative difference from that
in the one-confinement-band case. However the Majo-
rana fermions can be still realized even with very small
Zeeman fields. In Fig. 3d, we plot the energies of the
ground and first excited states by solving the relevant
multiband BdG equations, which agree with the results
obtained from the topological index.

Finally, although the parameter regime for Majorana
fermions does not change much as a function of ∆, the
minigap has a strong dependence on ∆. In Fig. 2b,
we plot the minigap with respect to ∆ in the multiband
model and find that Eg ∼ ∆ (similar as the electron-
doped case [15]), instead of ∆2 as in a regular s-wave or
a chiral-p wave superconductor. Therefore the minigap
is rather large, which ensures thermal robustness of the
Majorana fermions.

Conclusion: We have added a new system, a hole-
doped nanowire, to the list of systems capable of sup-
porting a non-Abelian TS state. Although the roster is
growing, ours is not an ordinary addition. As we have
shown here in detail, the requirements (carrier density,
magnetic field, g-factor, etc.) for the TS state in a hole-
doped nanowire are already accessible in experiments.
Thus this system can be a potential breakthrough facili-
tating solid-state demonstration of Majorana fermions as
well as realization of TQC using a nanowire network.
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