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Conclusive experimental evidence of a supersolid phase in any known condensed matter system is
presently lacking. On the other hand, a supersolid phase has been recently predicted for a system of
spinless bosons in continuous space, interacting via a broad class of soft-core, repulsive potentials.
Such an interaction can be engineered in assemblies of ultracold atoms, providing a well-defined
pathway to the unambiguous observation of this fascinating phase of matter. In this article, we
study by first principle computer simulations the elementary excitation spectrum of the supersolid,
and show that it features two distinct modes, namely a solid-like phonon and a softer collective
excitation, related to broken translation and gauge symmetry respectively.

PACS numbers: 67.80.K-, 67.85.Hj, 67.85.Jk, 67.85.-d, 02.70.Ss

The existence, physical properties and possible obser-
vation of a supersolid phase of matter, have been the sub-
ject of intense scientific debate for decades[1–5]. Such a
phase should feature the seemingly antithetic properties
of crystalline order and superfluidity. The bulk of the in-
vestigative effort, aimed at identifying and characterizing
this phase in known condensed matter systems, has fo-
cused on the most obvious candidate, namely solid 4He.
Presently, however, consensus is lacking as to whether the
existing experimental evidence unambiguously points to
supersolidity [6].
In recent times, attention has turned to the field of

ultracold atoms as a possible experimental venue af-
fording supersolid behaviour. Computer simulations
have yielded evidence of a supersolid phase in a two-
dimensional system of spinless bosons in continuous space
(i.e., not on a lattice), interacting through a specific class
of soft-core repulsive potentials[7, 8]. At low temperature
and high density, despite the repulsive character of the
interaction, particles pile up in clusters, in turn forming
a periodic array, to which we refer as “cluster crystal”[9]:
this is a lattice with a basis of K particles of the same
kind and null basis vector. This solid turns superfluid at
temperatures sufficiently low that phase coherence can be
established through quantum hopping of particles across
lattice sites (i.e., adjacent clusters).
To our knowledge, the particular soft-core interaction

that underlies this supersolid phase does not occur in
ordinary condensed matter systems; however, it can be
engineered for ultracold atoms[10]. This could pave the
way for a clear-cut experimental realization of this up
to now elusive phase. Thus, soft-core bosons may be re-
garded as the archetypal supersolid, an ideal playground
wherein fundamental properties of the supersolid phase
of matter can be explored. Of particular interest is the
spectrum of elementary excitations of a supersolid, which
offers access to arguably even more cogent information
on the physics of a system, than structural or energetic
properties of the ground state.

There are a number of outstanding issues, regarding
the basic features of the dynamic response function of a
supersolid. For example, it is not obvious how the exci-
tation spectrum would combine specific traits of a solid
and of a superfluid, i.e., whether two separate Goldstone
modes should be present, reflecting the two broken sym-
metries, or a single mode of distinct, different charac-
ter. Also of interest is establishing whether the excitation
spectrum of a superfluid system, that also breaks trans-
lational invariance, displays a roton minimum. These
fundamental issues go to the heart not only of superso-
lidity, but of our current, general understanding of quan-
tum many-body systems. It is also worth noting that the
experimental study of the dynamic structure factor in as-
semblies of ultracold atoms has recently begun[11, 12].
In this Article, we report results of a calculation

of the low-temperature excitation spectrum of density
fluctuations[13] in the dense fluid, cluster crystal and su-
persolid cluster crystal phases. We take the soft-disk
(SD) potential as representative[8] of the class of inter-
actions described above, which support the phases of in-
terest here.
We find that a new branch of acoustic modes appears,

not specifically related to the phonon-maxon-roton of the
superfluid or the phonons in the solid. This branch,
which has an analogue in the spectrum of the Bose-
Hubbard model (BHM) in its superfluid phase[14], can
be related to the breaking of the gauge symmetry[15, 16].
The Hamiltonian of the system in reduced units is

H = −
1

2

N
∑

i=1

▽2

i +D
∑

i>j

Θ(1− rij), (1)

where rij is the distance between particles i and j and N
is the particle number. The diameter a of the soft disks is
taken as the unit of length, while ǫ◦ = h̄2/ma2 is the en-
ergy unit. The system is enclosed in a cell of area A, with
periodic boundary conditions. We express the density ρ
through the dimensionless parameter rs = 1/

√

ρa2, i.e.,
the mean interparticle distance. We focus on a range of
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density where the mean number K of particles per site
in the cluster crystal phase is relatively high (roughly be-
tween ten and twenty)[17].
We use the Worm Algorithm in the continuous-space

path-integral representation[18, 19] to simulate the sys-
tem described by (1) in the grand canonical ensemble
(i.e., at fixed temperature T , area A and chemical po-
tential µ). The simulation gives an unbiased, accurate
numerical estimate of the imaginary-time intermediate
scattering function

F (k, τ) = 〈ρ̂k(τ)ρ̂
†
k
(0)〉/N, (2)

where ρ̂k =
∑

j e
ik·rj is the density fluctuation operator

at wavevector k and the brackets denote a thermal aver-
age. The dynamic structure factor S(k, ω), which mea-
sures the excitation spectrum of the density fluctuations,
is related to F (k, τ) via an inverse Laplace transform:

F (k, τ) =

∫

dωe−τωS(k, ω). (3)

It is well known that there exists no general scheme to
invert a Laplace transform from noisy data, in a way that
is reliable, accurate and controlled. However, for phys-
ical spectra whose dominant contribution is given by a
few well-defined peaks, some techniques are able to iden-
tify satisfactorily locations and spectral weights of those
peaks. In this work, we made use of the Genetic Inver-
sion via Falsification of Theories (GIFT)[20] approach
for the numerical inversion of the Laplace transform (3).
When applied to superfluid 4He, the GIFT method has
been shown to separate correctly the sharp quasipar-
ticle peak of the phonon-maxon-roton elementary ex-
citation from the broad multiphonon contribution[20],
whereas the more commonly adopted Maximum Entropy
scheme[21] tends to merge both structures[13]. Alongside
with this method, using the information on the number
n of excitations visible in the reconstructed spectrum,
we compute the energy of the n observed excitations by
assuming the spectrum S(k, ω) as a function of ω only
is constituted by n delta functions (n-pole approxima-
tion) and fit their positions and strengths to the available
F (k, τ) data.

Figure 1, colormap, shows GIFT reconstructions of
the dynamical structure factor S(k, ω) in the superfluid,
supersolid and cluster crystal phases; datapoints are ob-
tained from the n-pole approximation instead. In the
superfluid phase (Fig. 1 a), the spectrum is character-
ized by the usual phonon-maxon-roton dispersion, with
the notable peculiarity that the roton minimum is located
just short of 2π/a, rather than around 2π/rs. This sug-
gests that the incipient crystallization takes place with
a lattice parameter larger than the mean interparticle
distance. Indeed, upon increasing µ, the superfluid un-
dergoes a first order phase transition into a triangular
cluster (super)solid with a lattice spacing d somewhat
larger than a[8].
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FIG. 1. Dynamic structure factor S(k, ω) in various

phases. Panels refer to a) a superfluid, b) a supersolid, and
c) a non-superfluid cluster crystal. The colormap is obtained
by smoothing and interpolation of the calculated GIFT spec-
tra. In order to emphasize the dispersion of the spectrum, for
each k the dynamic structure factor is rescaled to a common
maximum value in all panels. The datapoints are obtained
from the n-pole approximation (see text); when errorbars are
not reported, these are of the order of the symbol size or
smaller. For the modulated phases b) and c), the primitive
vectors of the Bravais lattice are d(1, 0) and d(1/2,

√

3/2) with
d = 1.375a; the wavevector spans the range 0– 4π

d
√

3
along the

direction [0, 1]. The mean site occupation is K = 9.2 in b)
and K = 16.7 in c). Also given are the values of rs (mean
interparticle distance) and ρs (superfluid fraction).

The spectrum of the cluster crystal is also standard
(we have studied longitudinal excitations only). Figure
1c) shows that, within the first Brillouin zone, most of
the spectral weight is concentrated in an acoustic phonon
band. We observe a non-negligible zero-frequency contri-
bution at all wavelengths, representing a diffusive mode
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of lattice defects (phase-incoherent hopping of particles
between multiply occupied sites). We also observe for
some k-points the presence of an optical mode, which
might be the analog of the highly degenerate breathing
mode of individual clusters observed for classical cluster
systems[22], but we do not determine its dispersion rela-
tion here.
The excitation spectrum of the supersolid phase (Fig.

1b), is the central result of this work. The spectral weight
is clearly partitioned in two distinct branches. The
higher-energy mode is a longitudinal acoustic phonon,
with a linear dispersion at small k and near the recipro-
cal lattice vector (the end of the k scale in the figure),
and frequencies between the phonon-maxon of the liquid
and the longitudinal phonon of the solid. This assign-
ment is further supported by the following analysis. We
computed the average potential vtest(r) felt by a test par-
ticle across a lattice site (upper panel of Figure 2, also
showing the particle density profile). We define a force
constant by fitting a quadratic potential to the bottom of
vtest(r), and obtain the phonon frequency of a harmonic
crystal with that force constant and the average mass of a
cluster, given by K. The sound velocity of the harmonic
crystal is in satisfactory agreement (to within ∼ 10%)
with the slope of the phononic branch of the supersolid
displayed in Figure 1 b).
The lower branch of the supersolid spectrum is also

acoustic. Its nature is assessed by studying its behaviour
as the superfluid fraction ρs decreases on approaching
the transition to the normal cluster crystal. Figure 3 dis-
plays S(k, ω) at the Brillouin zone edge for rs = 0.421,
as in Figure 1b), and for a denser system at rs = 0.389
where the system is still supersolid but ρs drops from
0.30 to 0.15. When the density increases the particles
progressively get more localized around lattice sites, as
shown by the density profiles of Figure 2, and the sys-
tem gets stiffer. Correspondingly, the high energy peak
of the supersolid spectrum shifts to higher frequencies,
as expected for a phonon-like excitation. The low energy
mode instead loses spectral weight following the loss of
superfluid fraction, and shifts to lower frequencies, reduc-
ing its bandwidth. Similar results are obtained if super-
fluidity is suppressed by increasing the strength (D) of
the interaction, at fixed density. The lower branch is thus
seen to be largely unrelated to the spectra of the super-
fluid or the cluster solid phases. It could only be related
to the phonon-maxon-roton of the superfluid if the den-
sity modulation of the supersolid could vanish smoothly.
This possibility is preempted, however, by the first-order
phase transition at the melting density of the supersolid.

The structural properties of the cluster crystal[8], with
particles hopping between adjacent lattice sites, suggest
an analogy with the Bose-Hubbard model which is clearly
born by the spectral properties of both systems. While
in continuous space the lattice is self-assembled, and
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FIG. 2. Density profile and potential felt by a test

particle between two adjacent sites. The upper (lower)
panel corresponds to the supersolid (cluster crystal) phase of
Figure 1.
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FIG. 3. Comparison of S(k, ω) at different densities.
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thus features vibrational modes that are obviously absent
in the BHM, the lower branch of the supersolid phase
shows noteworthy similarities with the acoustic excita-
tion present in the superfluid phase of the BHM. In par-
ticular, its behaviour for wavelengths approaching the
reciprocal lattice vector 4π

d
√
3
parallels the expected lin-

ear vanishing of the superfluid mode of the BHM. Our
calculations use a finite simulation cell, implying a min-
imum distance of the wavevector from 4π

d
√
3
. Within this

limitation, we find that the spectrum of the cluster super-
solid is gapless at the reciprocal lattice vectors, i.e. there
is no roton minimum. The analogy between the super-
solid cluster crystal and the BHM superfluid is further
supported by the softening of the low energy branch of
the supersolid observed for increasing density (and/or in-
creasing D), Figure 3. A higher density implies reduced
hopping probability and enhanced on-site repulsion, as
shown in Figure 2. In the BHM this is equivalent to
lowering the t/U ratio, which in turn is known to re-
duce the bandwidth of the superfluid acoustic mode of
the superfluid phase[15]. The phase transition between
supersolid and cluster solid observed in the SD system
has thus some bearing with the superfluid to Mott insu-
lator (MI) quantum transition in the BHM. This is not
a full correspondence, as finite temperature and lattice
dynamics contribute to stabilize a compressible cluster
solid phase with non-integer mean occupation of lattice
sites, more similar to the normal liquid (NL) than the MI
phase of the BHM; on the other hand, the finite temper-
ature NL and MI phases are not fundamentally different,
being connected by a crossover upon varying t/U [23].

In the BHM, where the translation invariance is explic-
itly broken, the presence of an acoustic mode is due to
long-range phase coherence, which breaks the continuous
gauge symmetry. In a continuous space superfluid, the
corresponding mode is second sound. This mode is not
seen in the spectrum of the SD superfluid phase (Figure
1a), where its spectral weight is presumably exceedingly
low. In view of the analogy between the SD supersolid
and the BHM superfluid, we are led to suggest that the
lower branch of the supersolid is a kind of second sound.
Indeed, the presence of a second longitudinal acoustic
branch in a supersolid is a common feature of several
phenomenological models, which assume some degree of
phase coherence and the possibility of a density modula-
tion not commensurate to the particle number[16, 24, 25].
In particular, Ref. 16 characterizes this second branch in
the supersolid phase as a Brillouin peak, with out-of-
phase fluctuations of the normal and the superfluid den-
sity, emerging from the defects-associated Rayleigh mode
of the normal solid, much as second sound in superfluid
4He[26].
Summarizing, we have carried out a numerical study

of the excitation spectrum of a model cluster super-
solid. The main finding is that two well-defined, distinct

acoustic modes are present in the supersolid phase. The
higher-energy branch is determined by the lattice dynam-
ics, while the softer mode is uniquely due to the pres-
ence of a finite superfluid fraction. Its dispersion closely
parallels that of the excitation spectrum of a superfluid
Bose-Hubbard model: it further softens as superfluidity
is demoted approaching the insulating solid phase; fur-
thermore, for the system sizes studied here, it looks lin-
early vanishing at the reciprocal lattice vectors, rather
than featuring a finite roton minimum. The experimen-
tal realization of a SS system similar to that studied here
appears possible in assemblies of ultracold atoms[7]. The
double acoustic excitations, peculiar to the supersolid
phase, could be detected via Bragg Spectroscopy[11, 12].
This could be an interesting experimental verification of
our findings, and a tool for identifying the supersolid
phase unambiguously as well.
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