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Recent measurements of solar wind turbulence report the presence of intermittent, exponentially
distributed angular discontinuities in the magnetic field. In this Letter, we study whether such
discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the dis-
continuities by measuring the fluctuations of the magnetic field direction, ∆θ, across fixed spatial
increments ∆x in direct numerical simulations of MHD turbulence with an imposed uniform guide
field B0. A large region of the probability density function (pdf) for ∆θ is found to follow an expo-
nential decay, proportional to exp(−∆θ/θ∗), with characteristic angle θ∗ ≈ (14◦)(brms/B0)

0.65 for
a broad range of guide field strengths. We find that discontinuities observed in the solar wind can
be reproduced by MHD turbulence with reasonable ratios of brms/B0. We also observe an excess of
small angular discontinuities when ∆x becomes small, possibly indicating an increasing statistical
significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the
two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associ-
ated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range
turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit
anomalous scaling exponents, which indicates the existence of intermittent structures.

PACS numbers: 95.30.Qd, 96.50.Ci, 96.50.Tf

Introduction.—Over the past several decades, multiple
spacecraft have measured the fluctuations of the mag-
netic and velocity fields in the solar wind [1, 2]. This
has provided a wealth of data from which to test plasma
models such as magnetohydrodynamic (MHD) turbu-
lence [3, 4]. Among other things, this allows one to
study the intermittency of MHD and dissipative struc-
tures such as current sheets. However, the question re-
mains of whether the solar wind can be adequately de-
scribed by MHD turbulence, and whether different types
of structures can be distinguished from the data.

The existence of intermittent structures in a plasma is
implied by abrupt changes in magnetic field directions.
Bruno et al. [5] studied this feature in solar wind data
from the Helios 2 spacecraft by performing a minimum
variance analysis on the magnetic field vector. It was
found that there are times when the magnetic field un-
dergoes large changes in direction, implying that the solar
wind contains intermittent structures. It was proposed
that these strong fluctuations mark the boundaries of
flux tubes that originate in the Sun and are passively
advected by the solar wind.

Later, Borovsky [6] used data from the ACE space-
craft to examine the probability density function (pdf)
of angular shift in the magnetic field, given by ∆θ =
cos−1 (B1 ·B2/|B1||B2|) where B1 and B2 are mea-
surements of the magnetic field taken at two different
times. Two populations of magnetic discontinuities were
discerned. The first population consists of strong discon-
tinuities at 30◦ < ∆θ < 170◦ with an exponentially de-

caying pdf proportional to exp(−∆θ/24.4◦). The second
population consists of weak fluctuations at 5◦ < ∆θ <
30◦ which can be fit by exp(−∆θ/9.4◦). Miao et al. [7]
performed a similar analysis on slow wind data from the
Ulysses spacecraft. In their case, the first population
spanned approximately 50◦ < ∆θ < 160◦ and was pro-
portional to exp(−∆θ/30.0◦), while the second popula-
tion spanned 30◦ < ∆θ < 50◦ and was proportional to
exp(−∆θ/18.6◦), broadly agreeing with Borovsky’s re-
sult. In both reports, the strong discontinuities were in-
terpreted to come from coronal flux tube walls, while the
weak discontinuities were assumed to be turbulent fluc-
tuations.

An alternative hypothesis is that the magnetic discon-
tinuities in the solar wind are predominantly generated
by nonlinear interactions [8–10]. In this case, the discon-
tinuities evolve dynamically as the solar wind expands
away from the Sun. It is known that current sheets form
spontaneously in MHD turbulence, providing a natural
source of discontinuities.

These studies raise a principle question of why the
pdfs of angular shifts have exponential laws (regardless
of their origin), and what determines the typical angular
discontinuities characterizing the two observed scalings.
Although the statistical properties of magnetic fields
in MHD turbulence have been studied before [11–13],
the statistical properties of magnetic discontinuities have
been addressed to a lesser extent [14, 15]. In particular,
the statistical properties of angular shifts have not been
studied in numerical simulations of MHD turbulence. In
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this Letter, we investigate the statistical properties of
magnetic discontinuities in direct numerical simulations
of MHD turbulence with an imposed uniform magnetic
field B0. We use simulations with several choices of B0

that span the transition from turbulence with a weak
mean field to turbulence with a strong mean field. We
find that the pdfs of ∆θ all contain a region well fit by
P (∆θ) ∝ exp(−∆θ/θ∗), with a scaling that depends on
the background field strength as θ∗ ≈ (14◦) (brms/B0)

0.65.
The pdf of strong discontinuities in Borovsky’s and Miao
et al.’s studies could then be explained by MHD turbu-
lence with reasonable fluctuations/guide-field ratios for
the solar wind: the first population in Borovsky’s results
is consistent with our results for brms/B0 ∼ 2.4, and Miao
et al.’s result is consistent with brms/B0 ∼ 3.2.
We also find that when the spatial increment ∆x be-

comes small enough, the pdf exhibits an excess of small
angular discontinuities, which closely resembles the “sec-
ond” population in the solar wind observations. We con-
jecture that this population indicates the increasing con-
tribution of structures at the dissipative scale, where the
nature of turbulence changes.
One can then envision the following explanation of the

solar wind observations in which both populations of dis-
continuities arise from MHD turbulence. According to
our analysis, the strong discontinuities may be produced
by discontinuities in MHD turbulence with brms > B0,
which is typical of the solar wind. These discontinuities
will be observed regardless of whether any flux tubes are
advected by the solar wind. The population of weak dis-
continuities, on the other hand, may be produced by a
different kind of turbulence, which still generates an ap-
proximately exponential pdf but with a different char-
acteristic angle. In particular, this population may be
associated with dissipation-scale turbulence. If so, this
population emerges only when the interval between mea-
surements is small enough.
This picture is attractive because it explains the origin

and the exponential pdf of large angular discontinuities
as well as the small ones. This model for the solar wind
magnetic discontinuities can be complementary or possi-
bly alternative to Borovsky’s flux tube hypothesis.
Method.—The incompressible MHD equations can be

written as

∂tv + (v · ∇)v = −∇p+ (∇×B)×B + ν∇2v + f ,

∂tB = ∇× (v ×B) + η∇2B,

∇ · v = 0,

∇ ·B = 0, (1)

where v(x, t) is the plasma velocity, B(x, t) is the mag-
netic field, p is the pressure, and f(x, t) is the external
forcing. We take the viscosity ν and resistivity η to be
equal.
The angular shift in magnetic field between two space-

craft measurements is the angle between B(t) and B(t+

FIG. 1. The pdfs for angular shifts in magnetic field for MHD
turbulence with fixed guide field B0 = 1 and measurement in-
crements in the range 2 ≤ ∆x ≤ 32. Each pdf has a region
that is approximately an exponential decay, with a charac-
teristic angle that is independent of ∆x. Note that for ∆x
near the dissipation scale, small angular shifts become more
abundant than expected from the exponential tail.

∆t), where B(t) is the magnetic field vector at time t
and ∆t is the time increment. Instead of time incre-
ments, we use a spatial increment in our analysis, which
can be approximately related to the time increment by
∆x ≈ VSW∆t, where VSW is the solar wind velocity.
The angular shift in magnetic field between two points
P1 = (x, y, z) and P2 = (x+∆x, y, z) is then given by

∆θ = cos−1

(

B(x, y, z) ·B(x+∆x, y, z)

|B(x, y, z)||B(x+∆x, y, z)|

)

. (2)

We analyze data from simulations of driven incom-
pressible MHD with five different guide field strengths:
B0 ∈ {0.25, 0.5, 1, 5, 10}, in comparison to the root mean
square average perpendicular fluctuations of brms ∼ 1.3.
The simulations solve the full MHD equations with a
Reynolds number Re ≈ 2200 and conditions similar to
Ref. [16]. The simulations have a resolution of 5123.
For each case of B0, multiple snapshots of the simula-

tion during steady-state are analyzed. In each snapshot,
we measure ∆θ on a line of points separated by ∆x in
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FIG. 2. The pdfs for angular shifts in magnetic field with
fixed ∆x = 8 and several background magnetic fields (where
brms ∼ 1.3). Each pdf has a region where it takes the form of
exp(−∆θ/θ∗), where θ∗ depends on B0.

.

the x-direction (this is perpendicular to the guide field,
but the results in the parallel direction are similar).
Spatial increments are taken in the range 2 ≤ ∆x ≤ 32,
where ∆x = 1 is equal to the mesh spacing. This is
repeated along other lines in the snapshot with a spacing
of ∆y and ∆z grid points, where ∆y and ∆z are varied
to give enough statistics. For each choice of ∆x and B0,
we measured ∆θ at approximately 3.5× 106 data points.

Results.—The pdf for angular shifts in magnetic field
is shown in Fig. 1 for fixed guide field of B0 = 1 and
spatial separations in the range 2 ≤ ∆x ≤ 32. The axes
of the plot are log-linear, so a straight line represents an
exponential function. Each pdf has a region that is well
fit by exp(−∆θ/θ∗), where the characteristic angle θ∗ =
19.4◦ is independent of ∆x. For small spatial separations
(∆x ≤ 4), the exponential region is limited to the tail of
the pdf, and small angular shifts are more abundant than
expected from the exponential fit. This deviation from an
exponential can be attributed to dissipative effects, and
provides a natural explanation for a distinct population
of weak angular discontinuities.

FIG. 3. The characteristic angle measured in the exponen-
tial part of the pdf of ∆θ, denoted θ∗, is found to have a
power law dependence on B0/brms. The fit shown is θ∗ ≈
(14◦)(brms/B0)

0.65. It is interesting to note that the mean
angular shift, 〈∆θ〉, instead has an arctan dependence, shown
in the inset.

Next, we consider how the pdf for angular shifts
changes when the guide field is varied. This is shown
in Fig. 2 for fixed ∆x = 8 and varying B0. Each
case has an exponential region, but with characteris-
tic angle θ∗ decreasing with stronger guide fields. The
value of θ∗ is acquired by measuring the slope in the
exponential region with a least-squares fit. The re-
sult is that B0 = [0.25, 0.5, 1, 5, 10] correspond to θ∗ =
[43.3◦, 34.8◦, 19.4◦, 6.1◦, 3.3◦], respectively.
A functional form of the relation between θ∗ and

B0/brms is found by making a fit to our numerical mea-
surements. The best fit is a power law (Fig. 3), given
by

θ∗ ≈ (14◦) (brms/B0)
0.65. (3)

It is interesting to point out that the mean angular
shift obeys a different empirical relation (obtained by fit-
ting the simulation data),

〈∆θ〉 =

∫

∆θP (∆θ)d∆θ ∝ arctan

(

1.1brms

B0

)

, (4)
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which is shown in the inset of Fig. 3. This reflects the
fact that a significant contribution to the average comes
not from the exponentially declining tail of the probabil-
ity density function, but rather from its bulk part that
has a different scaling. Hence, the mean value of ∆θ is
determined by fluctuations outside of the exponential re-
gion. In support of this view, we note that the location
of the maximum in the function ∆θP (∆θ) indeed has an
arctan dependence on B0. This result reflects the fact
that a strong background magnetic field prevents large
deviations of the magnetic field vector from B = B0ẑ.
In addition to pdfs, another statistical tool used to

study intermittency is the spatial scaling of structure
functions [17, 18]. While the anomalous scaling of var-
ious structure functions has been observed in fluid and
in hydromagnetic turbulence, the intermittency of mag-
netic angular discontinuities has not been studied before.
We define the structure function of order n for magnetic
field direction to be

Sn
θ (∆x) = 〈|∆θ(∆x)|n〉, (5)

where the brackets 〈· · · 〉 indicate the spatial average of
the enclosed quantity. We assume that structure func-
tions have the form

Sn
θ (∆x) ∝ (∆x)ζn , (6)

where ζn are the exponents of the structure functions.
We determine ζn by measuring the slope of Sn

θ ver-
sus ∆x on a log-log plot using a least-squares fit. As
shown in Fig. 4, the relationship between ζn and n is
not linear, which indicates anomalous scaling due to in-
termittency. Flattening around ζn ≈ 1 implies the pres-
ence of shock-like magnetic angular discontinuities, that
is, current sheets [19, 20]. It is important to note that
measurements of structure functions above order 5 or 6
in a finite series of data may be contaminated by contri-
butions from rare events [21], hence the rightmost values
in Fig. 4 could be unreliable.
In addition to angular shifts in the magnetic field, one

may consider studying discontinuities in velocity field.
However, the angular shift in velocity is not invariant
under a Galilean transformation, so it has an ambigu-
ous physical interpretation. Instead, consider the veloc-
ity jump,

∆v = |v(x+∆x, y, z)− v(x, y, z)| (7)

which also has a pdf with an exponential region (not
shown) [17]. A scatterplot not shown here reveals that
∆θ is correlated with ∆v at large values, as long as ∆x
is chosen to be small (∆x ≤ 8).
Interestingly, a similar correlation was found in solar

wind data for fractional velocity jump ∆v/v instead of
velocity jump, where v is approximately constant (the
solar wind velocity) [6]. The correlation between ∆v/v

FIG. 4. The structure function exponents, ζn, associated with
the structure functions of magnetic field direction, Sn

θ . The
deviation from a straight line implies the existence of inter-
mittent structures .

and ∆θ at large values of ∆θ was attributed to the
crossing of flux tube walls, but our results suggest that
this can be explained by current sheets produced from
turbulence.

Conclusions.—We have addressed to what extent in-
compressible MHD turbulence can describe the magnetic
discontinuities in the solar wind. This was done by study-
ing the statistical properties of angular shifts in turbu-
lent MHD simulations with varying strengths of guide
field. We found that the pdf of angular shifts has a re-
gion of exponential decay, P (∆θ) ∝ exp(−∆θ/θ∗), in
agreement with the solar wind. We found that the as-
sociated characteristic angle is independent of spatial in-
crement ∆x, but depends on the guide field strength as
θ∗ ≈ (14◦)(brms/B0)

0.65.

Our results have implications for the discontinuities ob-
served in the solar wind. The exponential pdf of strong
discontinuities in the solar wind is consistent with MHD
turbulence for values of brms/B0 that are typical of the
solar wind. Additionally, our simulations show an excess
of weak discontinuities when spatial increments are small,
which can be interpreted as a second population. Turbu-
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lence can therefore qualitatively reproduce the solar wind
observations, with the strong discontinuities associated
with inertial-scale turbulence, and the weak discontinu-
ities with dissipation-scale turbulence. MHD turbulence
can then be considered a complementary or alternative
explanation of the discontinuities in the solar wind. Fur-
ther support for this picture comes from the correlation
between large velocity jumps and angular shifts in mag-
netic field observed in our simulations.

We also found that the structure functions of the mag-
netic field direction provide a means to study intermit-
tency. The observations of magnetic discontinuities in
the solar wind, and their connection to MHD turbulence,
motivate further study. A more detailed analysis of these
results will be presented in a future paper.
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