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Abstract

Using variational mean-field theory, many-body dissipative effects on the threshold law for quan-

tum sticking and reflection of neutral and charged particles are examined. For the case of an ohmic

bosonic bath, we study the effects of the infrared divergence on the probability of sticking and ob-

tain a non-perturbative expression for the sticking rate. We find that for weak dissipative coupling

α, the low energy threshold laws for quantum sticking are modified by an infrared singularity in the

bath. The sticking probability for a neutral particle with incident energy E → 0 behaves asymp-

totically as s ∼ E(1+α)/2(1−α) ; for a charged particle, we obtain s ∼ Eα/2(1−α). Thus, “quantum

mirrors” –surfaces that become perfectly reflective to particles with incident energies asymptoti-

cally approaching zero– can also exist for charged particles. We provide a numerical example of

the effects for electrons sticking to porous silicon via the emission of a Rayleigh phonon.

PACS numbers: 68.43.Mn, 03.65.Nk, 68.49.Bc, 34.50.Cx
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Since the very early years of quantum theory, theorists have considered the interaction

of low-energy atoms and molecules with surfaces [1]. In comparison to a classical particle,

a quantum particle at low energy was predicted to have a reduced probability to adsorb to

surfaces. The reason is despite the long-range attractive van der Waals interaction between

a neutral particle and surface, at sufficiently low energies, quantum particles have little

probability of coming near the surface [2].

This effect is named “quantum reflection,” and it is a simple result of the wave-like

nature of low-energy particles moving in a finite-ranged attractive potential. This reduction

in the particle’s probability density near the surface leads to a reduction in the transition

probability of the particle to a state bound to the surface. In one of the earliest applications of

quantum perturbation theory, Lennard-Jones and Devonshire concluded that the probability

of a neutral particle with energy E sticking to the surface should vanish as
√
E as E → 0.

In contrast, charged particles do not experience the effects of quantum reflection. Far

from the surface, charged particles interact with the surface through a Coulomb potential

generated by the image charge. Due to the slow spatial variation of the Coulomb potential,

incident particles behave semiclassically. As a result, Clougherty and Kohn [2] found that

the sticking probability should tend to a non-vanishing constant as E → 0.

Without a mechanism for the incident particle to transfer energy to the target, a particle

can not adsorb to the surface; however, previous theoretical studies have concluded that the

detailed form of the dynamical particle-surface interaction responsible for energy transfer

is inessential to the sticking threshold law [3–5]. This seemingly universal scaling law for

neutral particles was shown to hold even within a non-perturbative model that includes

arbitrarily strong quantum fluctuations of the surface [2, 6]. The model considered however

was regularized with the use of a low-frequency cutoff. Thus the effects of an infrared

divergence involving low frequency excitations were not included in the analysis.

In the eighties, experiments went to sub-milliKelvin temperatures to look for this thresh-

old law scaling in a variety of physical systems without success [7]. Theorists [8] realized that

the experiments suffered from unwanted interactions from a substrate supporting the target

of a superfluid helium film. By increasing the thickness of the film, the next generation of

experiments [9] produced data consistent with the
√
E law, and the controversy subsided.

In recent years, with dramatic advances in producing and manipulating ultracold atoms,

there is renewed interest in interactions between low-energy atoms and surfaces. New tech-
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nologies have been proposed that rely on the quantum dynamics of ultracold atoms near

surfaces; microfabricated devices called “atom chips” would store and manipulate cold atoms

near surfaces for quantum information processing and precision metrology [10]. Our under-

standing of device performance will depend in part on our understanding of ultracold atom-

surface interactions. Experiment is now in a position to test detailed theoretical predictions

on the behavior of low-energy sticking and scattering from surfaces.

In this Letter, we consider a standard physisorption model non-perturbatively and we

focus on the effects of low-frequency excitations on quantum reflection and sticking. Our

primary interest is in exploring theoretically how the threshold laws might be modified

by many-body effects. We follow the mean-field variational method introduced by Silbey

and Harris in their analysis of the quantum dynamics of the spin-boson model [11]. Using

this method we analyze the effects of the infrared divergence on the sticking process. Our

analysis reveals two distinct scaling regimes in the parameter space in analogy with localized

and delocalized phases in the spin-boson model. In the delocalized regime, an infrared

divergence in the bath is cutoff by an energy scale that depends on the incident energy of

the particle E. As a consequence, we find that both the threshold laws for neutral and

charged particles are modified by the dissipative coupling strength α. As a result of the low

frequency fluctuations, the threshold law for neutral particles is no longer universal, and the

threshold law for charged particles no longer precludes perfect reflection at ultralow energies.

We take a standard model that is commonly used to describe physisorption where the

adatom moves in a static potential and exchanges energy with a bath of oscillators. In

second quantized form, it becomes

H = Hp +Hb +Hc (1)

where

Hp = Ec†kck −Ebb
†b, (2)

Hb =
∑

q

ωqa
†
qaq, (3)

Hc = −(c†kb+ b†ck)g1
∑

q

σ (ωq) (aq + a†q)− c†kckg2
∑

q

σ (ωq) (aq + a†q)

−b†bg3
∑

q

σ (ωq) (aq + a†q) (4)
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c†k (ck) creates (annihilates) a particle in the entrance channel |k〉 with energy E; b† (b)

creates (annihilates) a particle in the bound state |b〉 with energy −Eb. a†q (aq) creates

(annihilates) a boson in the target bath with energy ωq. (We use natural units throughout

where ~ = 1.) Hc is a general dynamical particle-surface interaction where g1, g2 and g3 are

model coupling constants, obtainable from the specific particle-excitation mechanism. The

form of σ (ωq) also depends on the specific particle-excitation coupling. These quantities

are made explicit in a supplemental note [12] using the coupling to Rayleigh phonons as an

example.

The g2 term gives the strength of the coupling of the particle in the continuum to the

bath, while g3 gives the strength of the coupling of the bound particle to the bath. g1 gives

the strength of bath-assisted particle transitions between the continuum state and the bound

state. The coupling constants g2 and g3 are analogous to those found in polaron models,

and these terms give rise to self-energy corrections from the coupling to surface excitations.

There is ample evidence that such interactions are present in physisorption systems. A

hydrogen atom bound to the surface of a liquid helium film has been seen experimentally to

locally deform the surface [13], increasing the adatom binding energy and creating a type of

surface polaron.

We work in the regime where E ≪ Eb. We neglect the probability of “prompt” inelastic

scattering, where bosons are created and the particle escapes to infinity with degraded

energy, as the phase space available for these processes vanishes as E → 0. Thus only the

incoming and bound channels are retained for the particle.

We consider a model with ohmic dissipative spectral density. Physically this can be

realized with a dynamical particle-surface interaction resulting from surface displacements

of an elastically isotropic target. (Brivio [14] showed this in a semiclassical model for the

case of interactions with bulk phonons. We have found that an ohmic spectral density also

results for interactions with either Rayleigh phonons or “mixed mode” phonons [15]. We

note that the particle-ripplon interaction [16], appropriate for the case of hydrogen sticking

to superfluid helium films, gives a superohmic spectral density. Hence, the
√
E law would

remain unchanged in this case by the non-perturbative effects considered here.) The spectral

density function that characterizes the coupling to the excitation bath is given by

J(ω) ≡
∑

q

g23σ
2 (ωq) δ(ω − ωq) = αω (5)
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where α, the dissipative coupling strength, is a frequency-independent constant.

This model differs in an important way from the model of Ref. [2] where low frequency

modes were cutoff to prevent an infrared divergence in the rms displacement of the surface

atom in a 1D chain. In this model, low frequency modes are included, and their effects on

quantum reflection and sticking are the focus of this study.

We start with the variational approach used by Silbey and Harris [11] for the ohmic

spin-boson model. A generalized unitary transformation U = eS is first performed on the

Hamiltonian H , with

S = b†bx (6)

and

x =
∑

q

fq
ωq

(aq − a†q) (7)

The variational parameters to be determined are denoted by fq. The unitary transformation

displaces the oscillators to new equilibrium positions in the presence of the particle bound to

the surface and leaves the oscillators unshifted when the particle is in the continuum state.

The transformed Hamiltonian H̃ is given by

H̃ = eSHe−S (8)

= H̃p + H̃b + H̃c (9)

where

H̃p = Ec†kck − Ẽbb
†b, (10)

H̃c = −c†kb
∑

q

g1q(aq + a†q)e
−x − b†cke

x
∑

q

g1q(aq + a†q)

−c†kck
∑

q

g2q(aq + a†q)− b†b
∑

q

(g3q − fq)(aq + a†q) (11)

H̃b = Hb (12)

Ẽb = Eb +
∑

q

2fqg3q − f 2
q

ωq

(13)

and where giq ≡ giσ (ωq). We define a mean transitional matrix element ∆

∆ ≡
〈

ex
∑

q

g1q(aq + a†q)

〉

(14)

where 〈· · · 〉 denotes the expectation over the bath modes.
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The Hamiltonian is then separated into the following form

H̃ = H0 + V (15)

where V is chosen such that 〈V 〉 = 0. Hence, we obtain

H0 = Ec†kck − Ẽbb
†b−∆∗c†kb−∆b†ck +

∑

q

ωqa
†
qaq (16)

V = −c†kb

(

∑

q

g1q(aq + a†q)e
−x −∆∗

)

− b†ck

(

ex
∑

q

g1q(aq + a†q)−∆

)

−c†kck
∑

q

g2q(aq + a†q)− b†b
∑

q

(g3q − fq)(aq + a†q) (17)

We calculate the ground state energy of H0 in terms of the variational parameters {fq}
and minimize to obtain the following condition

fq

(

1 +
ǫ+ 2∆2ω−1

q√
ǫ2 + 4∆2

)

= g3q

(

1 +
ǫ√

ǫ2 + 4∆2

)

+
2∆

√
ug1q√

ǫ2 + 4∆2
(18)

which is an implicit equation for fq. For convenience, in the above we have defined

ǫ = E + Ẽb = E + Eb +
∑

q

2fqg3q − f 2
q

ωq
(19)

and

∆ =
√
uΩ1, (20)

u ≡ e
−

∑
q

f2q

ω2
q , (21)

Ω1 ≡
∑

q

g1qfq
ωq

(22)

Under the condition ∆ ≪ ǫ, Eq.(18) can be simplified to

fq =
g3q

1 + z
ωq

(23)

where

z ≡ ∆2

ǫ
(24)

We find the following, valid for z ≪ ωc,

u ≈ (ez/ωc)
α (25)

Ω1 ≈ g1αωc/g3 (26)

ǫ ≈ E + Eb + αωc (27)
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The closed-form expression for z is thus obtained

z ≈ K(
eK

ωc
)

α
1−α (28)

where

K ≈ (g1g3ρωc)
2

E + Eb + g23ρωc

(29)

and ρ = α/g23

Depending on the value of α, there are two solutions to the variational parameters fq.

We see from Eq. 28 that as α → 1, z → 0. Thus,

fq ≈











g3q α ≥ 1

g3q
1+ z

ωq

α < 1
(30)

In the regime where α < 1, we see that the parameter fq for excitations whose frequency

ωq ≪ z vanishes as ωq → 0. It is this weakening of the coupling to non-adiabatic excitations

that allows us to extract a finite mean transitional matrix element. In the process, the

sticking rate is altered from the perturbative result.

We can now show that the condition ∆ ≪ ǫ is satisfied so that our variational solution is

self-consistent. According to Eq. (24), ∆/ǫ =
√

z/ǫ. For α ≥ 1, z = 0, so ∆ = 0 and ∆ ≪ ǫ

holds true. For α < 1, z ∼ g
2

1−α

1 . The coupling constant g1 has a dependence on the initial

energy of the particle E. This can be seen from the transition matrix element

g1q = −〈b, 1q|Hc|k, 0〉 (31)

The amplitude of the initial state in the vicinity of the surface is suppressed by quantum

reflection. It is a simple consequence of wave mechanics [2] that in the low energy regime,

g1q ∼
√
E as E → 0 for a neutral particle. For a charged particle, the coupling constant

behaves as g1q ∼ E1/4 as E → 0, as it is not subject to the effects of quantum reflection.

Thus in either case, the mean-field amplitude ∆ becomes arbitrarily small as E tends to

zero, while ǫ approaches a non-zero value. Consequently the conditions for our variational

solution are always satisfied for sufficiently cold particles.

For ∆ ≪ ǫ, the rate of incoming atoms sticking to the surface can be calculated using

Fermi’s golden rule [17]:

R = 2π
∑

q

∣

∣

∣

〈

b, 1q

∣

∣

∣
H̃c

∣

∣

∣
k, 0
〉
∣

∣

∣

2

δ
(

−Ẽb −E + ωq

)

(32)
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where |1q〉 denotes a state of one excitation with wave vector q.

After calculating the relevant matrix elements, we find the leading order of the rate R in

the incident energy E to be

R = 2π(
z

ωc
)αeαg21ρEb

(

Eb

Eb + αωc

)

(33)

where z given in Eq. 28 is a constant with a power dependence on g1.

We compare this rate to that obtained by Fermi’s golden rule on the untransformed

Hamiltonian

R = 2π
∑

q

|〈b, 1q |Hc| k, 0〉|2 δ (−Eb − E + ωq)

= 2πg21ρEb (34)

The matrix elements of transformed Hamiltonian H̃c are reduced by a Franck-Condon factor

which gives the non-perturbative rate with an additional dependence on z.

The coupling constant g1 can be expressed in terms of a matrix element of the unperturbed

states using Eq. 31. We take Hc to have the general form in coordinate space [18]

Hc = −
∑

q,ν

∂V0(x)

∂x
uq,ν,x (35)

where the normal surface displacement uq,ν,x = Uq,ν,x(aq + a†q) with branch index ν and

phonon wavevector q, while V0(x) is the static surface potential.

The coupling constant g1 is given by

g1 =

〈

k

∣

∣

∣

∣

∂V0(x)

∂x

∣

∣

∣

∣

b

〉

=

∫ ∞

0

φ∗
k(x)

∂V0(x)

∂x
φb(x)dx (36)

(We have assumed the case of normal incidence, however results for the more general case

follow from decomposing the wave vector into normal and transverse components [16].)

The continuum wave functions have the asymptotic form for a neutral particle

φk(x)
k→0∼ k h1(x) (37)

and for a charged particle [2],

φk(x)
k→0∼

√
k h2(x) (38)

where k =
√
2mE, and hi(x) are functions, independent of E.
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The probability of sticking to the surface s is the sticking rate per surface area per unit

incoming particle flux. Hence, s(E) =
√

2π2m
E

R. From Eq. 33 we conclude that with α < 1

for a neutral particle,

s(E) ∼ C1E
(1+α)/2(1−α), E → 0 (39)

and for a charged particle,

s(E) ∼ C2E
α/2(1−α), E → 0 (40)

where Ci are energy-independent constants. It is apparent from the non-analyticity in α

(signaling a quantum critical point at α = 1) that the probability obtained goes beyond any

finite-order perturbation theory in g3.

We now provide a numerical calculation of the low-energy sticking probability of electrons

to porous silicon via the emission of a Rayleigh phonon to illustrate our new threshold law.

Porous silicon has a low static dielectric constant that varies with porosity and a low shear

modulus, conditions that we predict will lead to measurable experimental effects in the

one-phonon regime.

A comparative plot of the sticking probability is given in Fig. 1. The rate of sticking was

calculated using Eq. 33. Using a cut-off image potential, we find a binding energy on highly

porous silicon of Eb = 7.8 meV, a dissipative coupling α = 0.008 and g3 = 1.3 meVÅ−1.

Further computational details are given in the supplemental note [12].

The sticking probability is reduced and the slope of the energy-dependent sticking prob-

ability has increased in comparison to the threshold law based on perturbation theory. We

can quantify the size of the predicted effect on sticking: the relative error of omitting the

effect of the infrared singularity is 13.6% over the incident energies considered in Fig. 1.

The relative error will grow further at lower incident energies. The relative error made in

the exponent of the scaling law by omitting the effect of the infrared singularity is 100%.

In summary, we have considered the effects of the infrared singularity resulting from inter-

action with an ohmic bath on surface sticking. We calculated using a variational mean-field

method the sticking rate as a function of the incident energy in the low-energy asymptotic

regime. We have shown that for an ohmic excitation bath the threshold rate for neutral par-

ticles decreases more rapidly with decreasing energy E, in comparison with the perturbative

rate. We predict new threshold laws for surface sticking, where the energy dependence varies

with the dissipative coupling α.
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FIG. 1. (color online). The sticking probability of an electron of energy E to the surface of

porous silicon by the emission of a Rayleigh phonon. The perturbative result using Fermi’s golden

rule is given by (red) circles, while the variational mean-field result is given by (blue) stars. The

variational mean-field method gives a new threshold law for quantum sticking. We take a porosity

P = 92.9%, giving a dielectric constant κ = 1.2. The shear modulus of G = 230 MPa and Poisson’s

ratio σ = 0.03 are calculated using Ref. [19] .

The new threshold laws are beyond simple perturbation theory where only first-order

transitions are considered or the Fock space of the excitations is truncated. The new thresh-

old laws are a result of a bosonic orthogonality catastrophe [20]; the ground states of the

bath with different particle states are orthogonal. The sticking transition amplitude ac-

quires a Franck-Condon factor whose infrared singularity is cutoff by z. As with the x-ray

absorption edge [20], a new power law results at threshold. The low-frequency fluctuations

alter the power law to a bath-dependent, non-universal exponent.

For the case of charged particles, we find that dissipative coupling causes the sticking

probability to vanish as E → 0, in contrast to the perturbative result [2]. Thus, “quan-

tum mirrors” –surfaces that become perfectly reflective to particles with incident energies

asymptotically approaching zero– can also exist for charged particles.
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