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We present a light-front determination of the pionic contribution to the nucleon self-energy, Σπ,
to second-order in pion-baryon coupling constants that allows the pion-nucleon vertex function to
be treated in a model-independent manner constrained by experiment. The pion mass µ dependence
of Σπ is consistent with chiral perturbation theory results for small values of µ and is also linearly
dependent on µ for larger values, in accord with the results of lattice QCD calculations. The
derivative of Σπ with respect to µ2 yields the dominant contribution to the pion content, which is
consistent with the d̄ − ū difference observed experimentally in the violation of the Gottfried sum
rule.
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Understanding the pion and its interaction with and amongst nucleons is a necessary step in learning how QCD
describes the interaction and existence of atomic nuclei. As a nearly massless excitation of the QCD vacuum
with pseudoscalar quantum numbers, the pion plays a central role in particle and nuclear physics as a harbinger
of spontaneous symmetry breaking. The pion is associated with large distance structure of the nucleon [1, 2]
and the longest ranged component of the nucleon-nucleon force [3]. In lattice QCD calculations the nucleon
mass depends on an input value of the quark mass, which generates a pion mass µ, and extrapolation formulae
depending on µ are typically used [4–7] (see the review [8].) In addition, the pion cloud plays an important
role in deep inelastic scattering on the nucleon, especially in understanding the violation of the Gottfried sum
rule [9, 10].

Phenomenological calculations of pion-nucleon interactions are beset with uncertainties related to the de-
pendence of the vertex function on momentum transfer and on the possible dependence upon the virtuality
(difference between the square of the four-momentum and mass squared) of any intermediate nucleon or
baryon. Moreover, modern treatments of spin 3/2 baryons such as the ∆ (baryon excitation of lowest mass)
within the Rarita-Schwinger (RS) [11] formalism have been problematic as discussed in [12]. The pathologies
of the πN∆ coupling have long been known [13–17]. The aim of the present letter is to develop and apply a
method that is free of those ambiguities.

As a specific example, consider the role of the pion cloud in deep inelastic scattering. This is related to the
pion contribution to the nucleon self-energy of Fig. 1a. One needs to include the term in which the virtual
photon interacts with the pion [18], Fig. 1b, but one also needs to include the effects of the virtual photon
hitting the nucleon, Fig. 1c. Conservation of momentum and charge would seem to require that the argument
of the vertex function depends on the square of the invariant mass of the intermediate pion-baryon system
(s) [19]. Taking the form factor to have the standard form of depending on the square of the four-momentum
transfer, between the initial nucleon and intermediate baryon (t), while natural, popular and effective [20],[2]
seemingly disagrees with charge and momentum conservation according to [19].

But chiral symmetry (limit of vanishing pion mass) provides strong guidance. It is known that the πN
vertex function GπN (t) and the nucleon axial form factor are related by the generalized Goldberger-Treiman
relation [21]):

MGA(t) = fπGπN (t), (1)

where t is the square of the four-momentum transfered to the nucleons, GA(t) is the axial vector form factor and
fπ is the pion decay constant. The result Eq. (1), obtained from a matrix element of the axial vector current
between two on-mass-shell nucleons, follows from PCAC and the pion pole dominance of the pseudoscalar
current. Using Eq. (1) has obvious practical value because it relates an essentially unmeasurable quantity
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FIG. 1: (a) Pionic (dashed line) contribution to the nucleon (solid line) self-energy. (b) External interaction, x, with
the pion (c) External interaction, x, with the intermediate nucleon. (d) Effect of 2π-nucleon interaction.

GπN with one GA that is constrained by experiments. However the t dependence inherent in Eq. (1) would
seem to violate the purported consequence of momentum conservation. Similarly the pionic coupling between
nucleons and ∆ particles has an off-diagonal Goldberger-Treiman relation [22–24], obtained using similar logic:

2MCA5 (t) = fπGπN∆(t), (2)

where CA5 is the Adler form factor [25, 26], accessible in neutrino-nucleon interactions.
The present manuscript develops a method that satisfies momentum conservation, utilizes Eq. (1) and

involves only on-mass-shell nucleons. The key to removing ambiguities lies in evaluating the relevant Feynman
diagrams by carrying out the integration over the four-momentum k by first integrating over k− (the light front
energy) in such a way that the intermediate baryon is projected onto its mass shell. This allows the use of the
on-mass shell form factors Eqs. (1,2) and is manifestly consistent with charge and momentum conservation.

Consider the contribution to the nucleon self-energy Σπ(N), involving an intermediate nucleon, Fig. (1a),
given by Feynman rules as

Σπ(N) = −i3g2
πN ū(P )

∫
d4k

(2π)4

γ5(6p− 6k +M)γ5

(k2 − µ2 + iε)((p− k)2 −M2 + iε)
u(P )F 2(k2), (3)

where M,µ are the nucleon and pion masses. The quantity P represents the nucleon momentum and spin,
(p, s), evaluated in the proton rest frame. We use the notation: GπN (t) ≡ gπNF (t) = M

fπ
GA(t), with GA(0) =

1.267 ± 0.04, M = 0.939 GeV, fπ = 92.6 MeV, gπN ≡ GπN (0) = 13.2 with F (0) = 1. The term F (k2)
represents the pion nucleon form factor. Its dependence on a single variable is justified only if the pionic
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vertex function appears between two on-mass-shell nucleons. In that case, one may use a dispersion relation:

F (k2) =
1

π

∫ ∞
(3mπ)2

dt′ Im[F (t′)]/(k2 − t′). (4)

Performing the spin average of Eq. (3) leads to the result

Σπ(N) =
3g2
πN

M

∫
d4k F 2(k2)

i(2π)4

k · p
(k2 − µ2 + iε)((p− k)2 −M2 + iε)

. (5)

We evaluate Σπ(N) using light-front coordinates: k± ≡ k0 ± k3, k2 = k+k− − k2
⊥. Thus Σπ(N) =

3g2
πN

M

∫
dk+d2k⊥J, with

J =
1

i(2π)4

1

2

∫
dk−F 2(k2)

k · p
k+(p− k)+(k− − k2

⊥+µ2−iε
k+ )((p− k)− − k2

⊥+M2−iε
p+−k+ )

. (6)

The expression Eq. (4) for F (k2) is not written explicitly here because the analytic structure is the same as
that of 1/(k2 − µ2 + iε). If 0 < k+ < p+, the first pole in k− is in the lower half k− plane (LHP) (as are the
ones arising from F (k2)) and the intermediate nucleon pole is in the upper half plane (UHP). We integrate
over the UHP, so that the only pole we need to consider is the one in which the intermediate nucleon is on
its mass shell and the momentum k is space-like. For k+ < 0 and k+ > p+ all of the poles are on the same
side of the real axis, and one obtains 0. We take the residue of the integral for which the nucleon is on shell

so that k− = p− − M2+k2
⊥

p+−k+ . Using the residue theorem and integrating over k+ leads to the result

Σπ(N) = −3g2
πN

π

8M(2π)3

∫ ∞
0

dt
t F 2(−t)
(t+ µ2)

(
− t

M2
+

√
t2

M4
+

4t

M2

)
. (7)

This result is obtained by using the pseuodscalar form of πN coupling in Eq. (3), but the use of pseudovector
coupling would give the same result because the intermediate nucleon is on its mass shell.

To proceed we use a specific form of the form factor F , the commonly used dipole parametrization

F (Q2) = 1/(1 + (Q2/M2
A))2, (8)

with MA as the so-called axial mass. The values of MA are given by MA = 1.03 ± 0.04 GeV as reviewed in
[21]. This range is consistent with the one reported in a later review [27]. A somewhat lower value (0.85 Gev)
is obtained [28] if one restricts the extraction region to very low values of Q2, but we need higher values to
evaluate Eq. (7). Using this dipole parameterized form factor F gives

Σπ(N) = −3Mg2
πN

π

4(2π)3

1

6
(

4
b − 1

)5/2
(a− b)4

×

[
√

(4− b)b
(

(a− b)2(a(b− 10) + 2(b− 1)b)− 3a2(b− 4)2b log

(
b

a

))
+6
(
4a3 + a2(b− 6)b((b− 4)b+ 6)− 2ab2((b− 10)b+ 18)− 2(b− 2)b3

)
tan−1

(√
4

b
− 1

)

+6ab(b− 4)2
√

(a− 4)a(b− 4)b tan−1

(√
4

a
− 1

)
], a ≡ µ2/M2, b ≡M2

A/M
2. (9)

To relate to chiral perturbation theory we expand in powers of a up to order µ4 and b around unity to obtain
a very accurate representation of the exact expression for 0 ≤ a ≤ 0.04, 0.6 ≤ b ≤ 1.6. We find

Σ̃π(N) = −3Mg2
πN

π

4(2π)3
[

2π

27
√

3
+

(
−1

6
− 10π

27
√

3

)
a+ πa3/2 +((

2

3
+

104π

81
√

3

)
a2 − 16πa

81
√

3
+

8π

81
√

3

)
(b− 1) + a2

(
log(a)

2
− 67π

27
√

3
− 4

3

)
], (10)
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where the tilde indicates that a chiral expansion has been made. The term independent of the pion mass
provides a -0.222 M correction to the bare nucleon mass, in contrast with an early approach (not using the
heavy baryon expansion) which gives a contribution of formal order M(M/4πfπ)2 [29]. The term of order µ3

reproduces the standard expression: −3g2
A/(32πf2

π)µ3 [30].
The next step is to include terms with an intermediate ∆, the baryon excited state of lowest mass, which

couples strongly to the πN system. The effects of other intermediate baryons are not included in this first eval-
uation, but our technique can be applied to those states. We use the isospin-invariant interaction Lagrangian
of the form LπN∆ = gπN∆

2M ∆̄i
µ(p′)gµνu(p)∂νπ

i +H.c. [22, 23] which yields the same result as the gauge invariant

coupling of [12] for an on-shell intermediate ∆. We note that ∆i is a vector spinor in both spin and isospin
space and gπN∆ =

√
6/2GπN∆(0), a notational relation between re-normalized coupling constants [22]. The

contribution of the intermediate ∆ to the nucleon self-energy is given by

Σπ(∆) = i2(
gπN∆

2M
)2ū(P )

∫
d4k

(2π)4

( 6p− 6k +M∆)

(k2 − µ2 + iε)((p− k)2 −M2
∆ + iε)

(p− k)2

M2
∆

×P (3/2)
µν (p− k)kµkνu(P )F 2

∆(k2), (11)

where the factor of 2 arises from the isospin matrix element, M∆ is the mass of the ∆ and our notation for

the projection operator P
(3/2)
µν is given in [12]. We take the ratio of coupling constants to be ( gπN∆

gπN
)2 = 72/25,

which is the SU(6) quark model result. The form factor F∆ is defined via GπN∆(t) ≡ gπN∆F∆(t) = 2M
fπ
CA5 (t).

Performing the spin average leads to the result

Σπ(∆) = 2(
gπN∆

2M
)2 1

M

∫
d4k F 2

∆(k2)

i(2π)4
(M2 − p · k +MM∆)

(p− k)2

M2
∆

×2

3
[k2 − (k · (p− k))

2

(p− k)2
]

1

(k2 − µ2 + iε)((p− k)2 −M2
∆ + iε)

.

(12)

We evaluate Σπ(∆) using light-front coordinates in a procedure analogous to that used for Σπ(N). The
integral over k− is done in the upper half k− plane (UHP), so that the only pole is the one in which the
intermediate ∆ is on its mass shell and the momentum k is space-like. The result is

Σπ(∆) = −2(
gπN∆

2M
)2 π

M(2π)3

1

3

∫ ∞
0

dt
F 2

∆(−t)
(t+ µ2)

(
t+

1

4M2
∆

(M2 −M2
∆ + t)2

)
×1

2

(
(M +M∆)2 + t

)(−t+M2 −M2
∆

2M2
+

1

2M2

√
(M2

∆ −M2 + t)2 + 4tM2

)
. (13)

We turn to numerical evaluations. Lattice calculations [24] indicate that the ratio GπN∆(t)/GπN (t) is
constant as a function of the space-like values of t, thus here we use F∆(t) = F (t). The integration of
Eq. (13) yields a lengthy closed form expression. To gain insight, and compare with the general form of
the chiral expansion of baryon masses in QCD e.g. [31–33] we take MA = M, b = 1 and expand in µ/M ,

(ξ − 0.72), ξ ≡ M2
∆−M

2

M2 to find

Σ̃π(∆) = −2M(
gπN∆

2
)2 π

(2π)3

1

3
[f1(a) + (ξ − 0.72)f2(a)] (14)

f1(a) ≡ −0.888a2 + 1.01a2 log(a)− 1.55a2(log(a) + 1.20)

−0.402a2(log(a) + 1.24)− 0.00369a+ 0.280a log(a) + 0.310 (15)

f2(a) ≡ (5.48a2 + 1.46a2 log(a) + 2.39a2(log(a) + 1.20)

+0.128a2(log(a) + 1.24) + 1.02a+ 0.318a log(a)− 0.0196), (16)

where the tilde indicates that a chiral expansion has been made. The terms of order µ4 logµ2 emphasized
by [5],[34] are included, but the expression also contains previously noted [33] dominating non-analytic terms
of the form µ2 logµ2.



5

0.0 0.2 0.4 0.6 0.8

Μ
4 Π fΠ

1.0
1.2
1.4
1.6
1.8
2.0

MHGeVL

FIG. 2: Nucleon mass as a function of µ. Square blocks: LHP lattice data [35]. Solid: Σπ of Eq. (17), Eq. (9) and

Eq. (13). Dashed: chiral approximation Σ̃π = Σ̃π(N) + Σ̃π(∆), Eq. (10) and Eq. (14).

The total pionic contribution to the nucleon mass Σπ is given by

Σπ ≡ Σπ(N) + Σπ(∆), (17)

and the chiral approximation Σ̃π is given by Σ̃π ≡ Σ̃π(N) + Σ̃π(∆). These are shown in Fig. 2 as a function

of the varying pion mass µ, the only parameter that is varied. Bare masses, M0 = 2.42 GeV, M̃0 = 2.06 GeV
have been added to Σπ, Σ̃π so as to reproduce the lattice data point at µ/4πfπ = 0.252(µ = 293) MeV. We
use MA = 1.03 GeV. The use of the exact expression gives an approximately linear dependence on the pion
mass, in agreement with the “surprisingly linear” results of lattice QCD simulations [8, 35], found for values
of µ greater than about 290 MeV. The LHP lattice data [35] are shown, and these are consistent with other
lattice calculations as reviewed Varying the value of MA within the stated range changes the value of Σπ only
for µ > 0.5 GeV, and by 5 % or less. The low-order chiral approximation of Eq. (10) and Eq. (14) fails badly,
showing that the chiral logarithms do not dominate for the relatively large values of µ used in many previous
lattice QCD calculations. One could carry out the expansions of Eq. (10) and Eq. (14) to higher order in µ,
but convergence requires many terms. One achieves a satisfactory description of Σ(N) up to µ = 0.65 GeV
by keeping terms up to order µ24, and of Σ(∆) up to µ = M∆ −M GeV by keeping terms up to order µ20.

It is worthwhile to compare our procedure with that of some others. For example, if one uses the heavy
baryon limit to simplify Eq. (3), evaluates the integral by taking the pion to be on its mass shell and regularizes
the divergent integral over momentum using a cutoff at a maximum momentum, one obtains results that
correspond to the terms used in [5]. The relativistic procedure of [36] avoids the use of the heavy baryon limit
by treating the nucleon recoil terms using an expansion procedure and uses dimensional regularization. We
include all of the recoil terms and employ a cut-off procedure that is constrained by experimental data. In
chiral perturbation theory, our procedure corresponds to keeping a specific set of higher-order terms with a
fixed relation between them, a relation fixed by experimental data.

Our results do not include contributions of order higher than 1/f2
π . These may be considered as keeping the

lowest order pion cloud corrections using an expansion in powers of ε ≡ 1/(4πfπR)2, where R is a confinement
radius [1, 37, 38]. Here R ∼

√
12/MA , so ε ≈ 1/12. Thus we expect our results for the terms computed

here to be accurate within about 10%. This argument was mainly applied to terms involving combinations
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of couplings of the nucleon to a single pion, but also holds for the n-pion-nucleon vertex e.g. as appearing in
Fig. 1d. These terms enter at higher orders in µ in chiral perturbation theory [39]. The coupling constant
gπN and the confinement sizes of the pion and the nucleon, although not explicit in chiral perturbation theory,
enter into the calculation of the diagram in terms of quarks and gluons and via the implicit dependence of fπ
and gπN on the underlying strong coupling constant, αS . Therefore we expect that the terms of the chiral
Lagrangian will be consistent with the expansion in ε.

To test our treatment of the nucleon self-energy, we consider the contribution to lepton-nucleon deep inelastic
scattering DIS arising from virtual pions. This is related to the term Mπ, obtained from Feynman rules for
the diagram of Fig 1b, as

Mπ = 2M
∂Σπ
∂µ2

. (18)

This expression does not involve a “probability”, because the square of a nucleon light-front wave function does
not appear. Note that charge and momentum are explicitly conserved: production of a pion of momentum k
is accompanied by an intermediate nucleon of momentum p− k. The integrations over k−, k⊥ are carried out
explicitly, and with the definition y = k+/p+ one finds

Mπ =

∫ 1

0

dyfπ(y), fπ(y) ≡ fNπ (y) + f∆
π (y),

fNπ (y) ≡ 3g2
πN

π

2(2π)3

∫ ∞
y2M2/(1−y)

dt
t F 2(−t)
(t+ µ2)2

,

f∆
π (y) ≡ 2(

gπN∆

2M
)2 π

(2π)3

2

3

∫ ∞
(y2M2+y(M2

∆−M2))/(1−y)

dt
F 2(−t)

(t+ µ2)2

×
(
t+

1

4M2
∆

(M2 −M2
∆ + t)2

)
1

2
((M +M∆)2 + t). (19)

The functions fNπ (y), f∆
π (y) are shown in Fig. 3 where one observes that these functions are of roughly equal

importance.
The change in the quark distribution functions of the nucleon, δqi(x), from this effect is given by the

convolution formula as δqi(x) =
∫ 1

x
dyfπ(y)qπi (x/y), with qπi the distribution functions for quarks of flavor i

in the pion. The related contribution to the nucleon structure function δF2(x) is

δF2(x) =

∫ 1

x

yfπ(y)Fπ2 (x/y)dy, (20)

where Fπ2 is the pion structure function [9, 40].
An integral involving the difference between the proton and neutron structure functions is particularly

interesting: ∫ 1

0

dx

x
(F p2 (x)− Fn2 (x)) = 1/3− 2

3

∫ 1

0

dx(d̄(x)− ū(x)), (21)

where the first term, obtained if the bare nucleon has a symmetric sea, i.e. d̄ = ū, represents the Gottfried
sum rule [41]. Experiment has clearly established violation of the Gottfried sum rule, and the most precise
determination of the sea asymmetry [42] is

D ≡
∫ 1

0

(d̄(x)− ū(x))dx = 0.118± 0.012. (22)

Henley & Miller [10] showed that the pion cloud provides a natural explanation of the measured asymmetry.
For Fig. 1b, the pion cloud of a proton will include π+(ud̄) and the π0, which has equal numbers of d̄ and ū.
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FIG. 3: yfπ(y) for the intermediate πN and π∆ states for MA = 0.99,1.03,1.07 GeV

Only valence quarks of the pions are considered; the pion sea distributions are assumed to be symmetric. The
probability for a π+n intermediate state is 2/3, and that for a π0p state is 1/3. Including also the effects of
an intermediate ∆ leads to

Dπ =

∫ 1

0

dyy(
2

3
fNπ (y)− 1

3
f∆
π (y)), (23)

with the probability of π−∆++ = 1/2 and that for π+∆0 =1/6. Since a bare baryon is assumed to have
a symmetric sea, possible contributions from Fig. 1c do not enter. Using MA = 1.03 GeV, the nucleonic
contribution is 0.173, and the ∆ contribution is -0.064, so that the total is 0.109, within the experimental
range of Eq. (22).

To summarize: our light front treatment of the relevant Feynman diagrams reveals that the pion-baryon
vertex function appears only between on-mass-shell baryons. This allows the vertex function to be expressed
in terms of one variable, the invariant momentum transfer t, and to be constrained by experimental data. All
ambiguities regarding the theoretical input needed to evaluate effects of the pion cloud to second-order in the
coupling constants for the effects of intermediate N,∆ are resolved. The uncertainty due to the neglect of
higher-order terms is estimated to be about 10%. Our procedure reproduces the observed linear dependence of
the nucleon mass on the pion mass found in lattice QCD calculations and the flavor asymmetry of the nucleon
sea. This work has implications for nucleon-nucleon scattering because one is instructed to use the coupling
implied by Eq. (1), and also for computing pion cloud effects on the elastic electromagnetic form factors of
nucleons [43].
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[29] J. Gasser, M.E. Sainio, A. Švarc, Nuclear Phys. B 307, 779 (1988).
[30] P. Langacker and H. Pagels, Phys. Rev. D 10, 2904 (1974).
[31] E. E. Jenkins and A. V. Manohar, Phys. Lett. B 255, 558 (1991).
[32] E. E. Jenkins, Nucl. Phys. B 368, 190 (1992).
[33] V. Bernard, N. Kaiser and U. G. Meissner, Z. Phys. C 60, 111 (1993).
[34] W. Armour, C. R. Allton, D. B. Leinweber, A. W. Thomas and R. D. Young, Nucl. Phys. A 840, 97 (2010).
[35] A. Walker-Loud, H. -W. Lin, D. G. Richards, R. G. Edwards, M. Engelhardt, G. T. Fleming, P. Hagler and

B. Musch et al., Phys. Rev. D 79, 054502 (2009).
[36] T. Becher and H. Leutwyler, Eur. Phys. J. C 9, 643 (1999).
[37] R. L. Jaffe, MIT-CTP-814, 1979. Erice Summer School, Ettore Majorana, Vol. 17 (ed. A. Zichichi), Plenum Press,

NY 1982.
[38] C. E. DeTar, Phys. Rev. D 24, 752 (1981); C. E. DeTar, Phys. Rev. D 24, 762 (1981).
[39] A. Walker-Loud, Nucl. Phys. A 747, 476 (2005); B. C. Tiburzi and A. Walker-Loud, Nucl. Phys. A 764, 274

(2006); A. Walker-Loud, hep-lat/0608010; A. Walker-Loud, arXiv:1112.2658 [hep-lat].
[40] M. Ericson, A. W. Thomas, Phys. Lett. B128, 112 (1983).
[41] K. Gottfried, Phys. Rev. Lett. 18, 1174 (1967).
[42] R. S. Towell et al.. Phys. Rev. D 64, 052002 (2001).
[43] G. A. Miller, Phys. Rev. C 66, 032201 (2002); H. H. Matevosyan, G. A. Miller and A. W. Thomas, Phys. Rev. C

71, 055204 (2005).


