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We present a precise measurement of the CP violation parameter sin 2φ1 and the direct CP
violation parameter Af using the final data sample of 772 × 106 BB̄ pairs collected at the Υ(4S)
resonance with the Belle detector at the KEKB asymmetric-energy e+e− collider. One neutral
B meson is reconstructed in a J/ψK0

S , ψ(2S)K
0
S, χc1K

0
S or J/ψK0

L CP -eigenstate and its flavor
is identified from the decay products of the accompanying B meson. From the distribution of
proper time intervals between the two B decays, we obtain the following CP violation parameters:
sin 2φ1 = 0.667 ± 0.023(stat)± 0.012(syst) and Af = 0.006 ± 0.016(stat)± 0.012(syst).

PACS numbers: 11.30.Er, 12.15.Hh, 13.25.Hw

In the standard model (SM), CP violation in the quark
sector is described by the Kobayashi-Maskawa (KM) the-
ory [1] in which the quark-mixing matrix has a single irre-
ducible complex phase that gives rise to all CP -violating
asymmetries. In the decay chain Υ(4S) → B0B̄0 →
fCP ftag, where one of the B mesons decays at time tCP
to a CP -eigenstate fCP and the other decays at time ttag
to a final state ftag that distinguishes between B0 and
B̄0, the decay rate has a time dependence in the Υ(4S)
rest frame [2] given by

P(∆t) =
e−|∆t|/τ

B0

4τB0

{

1 + q ·
[

Sf sin(∆md∆t)

+ Af cos(∆md∆t)
]

}

. (1)

Here Sf and Af are CP violation parameters, τB0 is
the B0 lifetime, ∆md is the mass difference between the
two neutral B mass eigenstates, ∆t ≡ tCP − ttag, and
the b-flavor charge q = +1 (−1) when the tagging B
meson is a B0 (B̄0). With very small theoretical uncer-
tainty [2], the SM predicts Sf = −ξf sin 2φ1 and Af = 0
for the b → cc̄s transition, where ξf = +1 (−1) cor-
responds to CP -even (-odd) final states and φ1 is an

interior angle of the KM unitarity triangle, defined as
φ1 ≡ arg[−VcdV

∗
cb/VtdV

∗
tb] [3]. The BaBar and Belle

collaborations have published several determinations of
sin 2φ1 since the first observation [4, 5]; previous results
used 465×106 [6] and 535×106 [7] BB̄ pairs, respectively.

With recently available experimental results, not only
sin 2φ1 but also other measurements of the sides of the
unitarity triangle and other CP violation measurements
make it possible to test the consistency of the KM
scheme. The indirect determination of the angle φ1 de-
viates by 2.7σ from the current world average for the
direct determination of sin 2φ1 [8]. Equivalently, the
B± → τ±ντ branching fraction and the resulting value
of |Vub| differ by 2.8σ from the prediction of the global
fit [8], where the sin 2φ1 value gives the most stringent
constraint on the indirect measurement. Furthermore,
time-dependent CP violation in the neutral B meson de-
cays mediated by flavor-changing b → s transitions may
deviate from CP violation in the b→ cc̄s case because of
possible additional quantum loops [9]. To clarify whether
new physics contributes to CP -violating phenomena or
B± → τ±ντ decays, it is very important to determine
sin 2φ1, the SM reference, as precisely as possible.

In this Letter, we describe the final Belle measure-
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ment of sin 2φ1 and Af in b → cc̄s induced B decays to
fCP . The B decays to the CP -odd eigenstates, fCP =
J/ψK0

S , ψ(2S)K
0
S and χc1K

0
S , and the CP -even eigen-

state, fCP = J/ψK0
L, are reconstructed using 772× 106

BB̄ pairs, the entire data sample accumulated on the
Υ(4S) resonance with the Belle detector [10] at the
KEKB asymmetric-energy e+e− collider [11]. Two in-
ner detector configurations were used. A 2.0 cm radius
beampipe and a 3-layer silicon vertex detector (SVD)
were used for the first data sample that contains 152×106

BB̄ pairs. The remaining 620× 106 BB̄ pairs were accu-
mulated with a 1.5 cm radius beampipe, a 4-layer silicon
vertex detector and a small-cell inner drift chamber. The
latter data sample has been recently reprocessed using a
new charged track reconstruction algorithm, which sig-
nificantly increased the reconstruction efficiency for the
B0 → (cc̄)K0

S decay modes. In particular, the gain for
the B0 → J/ψK0

S decay mode is 18%.

The Υ(4S) is produced with a Lorentz boost of βγ =
0.425 nearly along the z-axis, which is antiparallel to the
positron beam direction. Since the B0 and B̄0 mesons are
approximately at rest in the Υ(4S) center-of-mass system
(CM), ∆t can be determined from the displacement in z
between the fCP and ftag decay vertices: ∆t ≃ (zCP −
ztag)/(βγc) ≡ ∆z/(βγc).

Charged tracks reconstructed in the central drift cham-
ber (CDC), except for tracks from K0

S → π+π− decays,
are required to originate from the interaction point (IP).
We distinguish charged kaons from pions based on a kaon
(pion) likelihood LK(π) derived from the time-of-flight
scintillation counters, aerogel threshold Cherenkov coun-
ters (ACC), and dE/dx measurements in the CDC. Elec-
tron identification is based on the ratio of the electro-
magnetic calorimeter (ECL) cluster energy to the parti-
cle momentum as well as a combination of dE/dx mea-
surements in the CDC, the ACC response, and the posi-
tion and shape of the electromagnetic shower. Muons are
identified by track penetration depth and hit scatter in
the muon detector (KLM). Photons are identified as iso-
lated ECL clusters that are not matched to any charged
track.

For the J/ψK0
S , J/ψK

0
L and ψ(2S)K0

S modes, event
selection is the same as in our previous analyses [7, 12],
where J/ψ mesons are reconstructed via their decays
to ℓ+ℓ− (ℓ = e, µ) and the ψ(2S) mesons to ℓ+ℓ− or
J/ψπ+π−. For the modes J/ψK0

L and χc1K
0
S , in which

the χc1 is reconstructed in the J/ψγ final state, both
J/ψ daughter tracks must be positively identified as lep-
tons, whereas for the J/ψK0

S and ψ(2S)K0
S modes, at

least one daughter must satisfy this requirement. Any
other track having an ECL energy deposit consistent
with a minimum ionizing particle is accepted as a muon
candidate and any track satisfying either the dE/dx
or the ECL shower energy requirements is retained as
an electron candidate. For J/ψ → e+e− decays, the
e± charmonium daughters are combined with photons

found within 50 mrad of the e+ or e− direction in or-
der to account partially for final-state radiation and
bremsstrahlung. In order to accommodate the remain-
ing radiative tails, an asymmetric invariant mass require-
ment is used to select J/ψ and ψ(2S) decays in dilep-
ton modes, −150 MeV/c2 < Me+e− −Mψ < 36 MeV/c2

and −60 MeV/c2 < Mµ+µ− −Mψ < 36 MeV/c2, where
Mψ denotes either the nominal J/ψ or ψ(2S) mass.
For ψ(2S) → J/ψπ+π− candidates, we require a mass
difference of 580 MeV/c2 < Mℓ+ℓ−π+π− − Mℓ+ℓ− <
600 MeV/c2, and χc1 → J/ψγ candidates are required
to have a mass difference of 385.0 MeV/c2 < Mℓ+ℓ−γ −
Mℓ+ℓ− < 430.5 MeV/c2. For each charmonium candi-
date, vertex-constrained and mass-constrained fits are
applied to improve its momentum resolution.

CandidateK0
S → π+π− decays are selected by require-

ments on their invariant mass, flight length and consis-
tency between the K0

S momentum direction and vertex
position. Candidate K0

L mesons are selected from ECL
and/or KLM hit patterns that are consistent with the
presence of a shower induced by a K0

L meson. The cen-
troid of the K0

L candidate shower is required to be within
a 45◦ cone centered on the K0

L direction calculated from
the two-body B decay kinematics and the momentum of
the reconstructed J/ψ meson.

For B → fCP candidate reconstruction in modes other
than J/ψK0

L, B candidates are identified by two kine-
matic variables: the energy difference ∆E ≡ E∗

B −
E∗

beam and the beam-energy constrained mass Mbc ≡
√

(E∗
beam)

2 − (p∗B)
2, where E∗

beam is the CM beam en-
ergy, and E∗

B (p∗B) is the CM energy (momentum) of the
reconstructed B candidate. The B0 → J/ψK0

L candi-
dates are identified by the value of p∗B calculated using a
two-body decay kinematic assumption.

The b-flavor of the accompanying B meson is identi-
fied from inclusive properties of particles that are not
associated with the reconstructed B0 → fCP decay [13].
The tagging information is represented by two parame-
ters, the b-flavor charge q and purity r. The parameter
r is an event-by-event, MC-determined flavor-tagging di-
lution factor that ranges from r = 0 for no flavor dis-
crimination to r = 1 for unambiguous flavor assignment.
The data are sorted into seven intervals of r. For events
with r > 0.1, the wrong tag fractions for six r inter-
vals, wl(l = 1, 6), and their differences between B0 and
B̄0 decays, ∆wl, are determined from semileptonic and
hadronic b → c decays [12, 14]. If r ≤ 0.1, the wrong
tag fraction is set to 0.5, and therefore the tagging infor-
mation is not used. The total effective tagging efficiency,
Σ(fl × (1 − 2wl)

2), is determined to be 0.298 ± 0.004,
where fl is the fraction of events in the category l.

The vertex position for the fCP decay is reconstructed
using J/ψ or ψ(2S) daughter tracks that have a minimum
number of SVD hits, while the ftag vertex is determined
from well-reconstructed tracks that are not assigned to
fCP [14]. A constraint on the IP profile in the plane per-
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pendicular to the z-axis is used with the selected tracks.
With this procedure, we are able to determine a vertex
even in the case where only one track has sufficient asso-
ciated SVD hits. The fractions of the single track vertices
for fCP and ftag are about 12% and 23%, respectively.

For a single track vertex, the estimated error of the z
coordinate, σz , is the indicator of the vertex fit qual-
ity and is required to be less than 500 µm. On the
other hand, a vertex reconstructed using two or more
tracks is characterized by a more robust goodness-of-
fit indicator. In the previous analysis [7], the value of
χ2 of the vertex calculated solely along the z direction
was used. This is now replaced by h, the value of χ2

in three-dimensional space calculated using the charged
tracks without using the interaction-region profile’s con-
straint [15]. A detailed MC study indicates that h is a
superior indicator of the vertex goodness-of-fit because it
is less sensitive to the specific B decay mode; in particu-
lar, h shows a smaller mode dependence for the vertices
reconstructed from B → J/ψX and B → D(∗)X decays,
which are used as control samples to determine the ver-
tex resolution parameters. In the multiple-track vertex
case, h < 50 and σz < 200 µm are required. For candi-
date events in which both B vertices are reconstructed,
we retain only those events where the B vertices satisfy
|∆t| < 70 ps for further analysis.

For the candidate events in which both flavor tagging
and vertex reconstruction succeed, the signal yield and
purity for each mode are obtained from an unbinned
maximum-likelihood fit to the two-dimensional ∆E−Mbc

distribution for fCP modes with a K0
S meson, and to

the p∗B distribution for J/ψK0
L. The background mainly

comes from BB̄ events in which one of the B meson de-
cays into a final state containing a correctly reconstructed
J/ψ, i.e., the B → J/ψX process. In order to deter-
mine this background distribution, a B → J/ψX MC
sample corresponding to 100 times the integrated lumi-
nosity of data is used. An estimate of other combinato-
rial backgrounds is obtained from the Mℓ+ℓ− sideband.
For CP -odd modes, the signal distribution is modeled
with a Gaussian function in Mbc and a double Gaussian
function in ∆E. The fits to determine signal yields for
these modes are performed in the region 5.2 GeV/c2 <
Mbc < 5.3 GeV/c2 and −0.1 GeV < ∆E < 0.2 GeV.
The p∗B signal shape for J/ψK0

L is determined from MC
events. The requirement p∗B < 2.0 GeV/c is used in
the fit to estimate the signal yield as well as the con-
tribution of three categories of background: those with
a real (those that are correctly reconstructed) J/ψ and
a real K0

L, background with a real J/ψ and a fake K0
L

(those that are incorrectly reconstructed from electronic
noise or electro-magnetic showers) and events with a fake
J/ψ (those that are background combinations). TheMbc

distribution for a stringent ∆E requirement (|∆E| <
40 MeV for J/ψK0

S , |∆E| < 30 MeV for ψ(2S)K0
S and

|∆E| < 25 MeV for χc1K
0
S) as well as the p

∗
B distribution

for J/ψK0
L candidates are shown in Fig. 1. We require

5.27 GeV/c2 < Mbc < 5.29 GeV/c2 for fCP modes with
aK0

S and 0.20 GeV/c < p∗B < 0.45 GeV/c for J/ψK0
L for

the fit to the CP violation parameters. For the candi-
dates passing all the criteria mentioned above, the signal
yield and purity are estimated for each CP -eigenstate
and listed in Table I.

1k

2k

3k

5.2 5.22 5.24 5.26 5.28 5.3

All combined
B0→J/ψKS
B0→ψ(2S)KS
B0→χc1KS
Fit result

(a)

Mbc (GeV/c2)

E
ve

nt
s 

/ 1
 M

eV
/c

2

Data
B0→J/ψKL
real J/ ψ, real K L
real J/ ψ, fake K L
fake J/ ψ

(b)

pB
* (GeV/c)

E
ve

nt
s 

/ 5
0 

M
eV

/c

1k

2k

3k

4k

5k

0 0.4 0.8 1.2 1.6 2

FIG. 1: (color online) (a) Mbc distribution within the ∆E
signal region for B0

→ J/ψK0
S (black), ψ(2S)K0

S (blue) and
χc1K

0
S (magenta), the superimposed curve (red) shows the

combined fit result for all these modes; (b) p∗B distribution of
B0

→ J/ψK0
L candidates with the results of the fit separately

indicated as signal (open histogram), background with a real
J/ψ and real K0

L’s (yellow), with a real J/ψ and a fake K0
L

candidate (green) and with a fake J/ψ (blue).

TABLE I: CP eigenvalue (ξf ), signal yield (Nsig) and purity
for each B0

→ fCP mode.

Decay mode ξf Nsig Purity (%)

J/ψK0
S −1 12649±114 97

ψ(2S)(ℓ+ℓ−)K0
S −1 904± 31 92

ψ(2S)(J/ψπ+π−)K0
S −1 1067± 33 90

χc1K
0
S −1 940± 33 86

J/ψK0
L +1 10040±154 63

We determine Sf and Af for each mode by perform-
ing an unbinned maximum-likelihood fit to the observed
∆t distribution. The probability density function (PDF)
for the signal distribution, Psig(∆t;Sf ,Af , q, wl,∆wl), is
given by Eq. (1), fixing τB0 and ∆md at their world
average values [16] and including modifications to take
the effect of incorrect flavor assignment (parameterized
by wl and ∆wl) into account. The distribution is con-
volved with the proper-time interval resolution function,
Rsig(∆t), formed by convolving four components: the de-
tector resolutions for zCP and ztag, the shift of the ztag
vertex position due to secondary tracks from charmed
particle decays, and the kinematic approximation that
the B mesons are at rest in the CM frame [17]. Because
we now use h to characterize the vertex goodness-of-fit,
each of these resolution function components in Ref. [17]
is reformulated as a function of h and σz .
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Using the Mbc sideband events, the background PDF,
Pbkg(∆t), for each of the CP -odd modes is modeled as
a sum of exponential and prompt components, and is
convolved with Rbkg(∆t) expressed as a double Gaussian
function. In the J/ψK0

L mode, there are CP violating
modes among the B → J/ψX backgrounds, which are
included in the background PDF. The ∆t PDFs for the
remaining B → J/ψX and other combinatorial back-
grounds are estimated from the corresponding large MC
sample and Mℓ+ℓ− sideband events, respectively. The
construction of these PDFs follows the same procedure
as in our previous analyses [7, 12].
We determine the following likelihood for the i-th

event:

Pi = (1−fol)
∑

k

fk

∫

[Pk(∆t
′)Rk(∆ti −∆t′)] d(∆t′)

+folPol(∆ti), (2)

where the index k labels each signal or background com-
ponent. The fraction fk depends on the r region and
is calculated on an event-by-event basis as a function
of ∆E and Mbc for the CP -odd modes and p∗B for the
CP -even mode. The term Pol(∆t) is a broad Gaussian
function that represents an outlier component fol, which
has a fractional normalization of order 0.5% [17]. The
only free parameters in the fits are Sf and Af , which
are determined by maximizing the likelihood function
L =

∏

i Pi(∆ti;Sf ,Af ). This likelihood is maximized
for each fCP mode individually, as well as for all modes
combined taking into account their CP -eigenstate values;
the results are shown in Table II. Figure 2 shows the
∆t distributions and asymmetries for good tag quality
(r > 0.5) events. We define the background-subtracted
asymmetry in each ∆t bin by (N+ − N−)/(N+ + N−),
where N+(N−) is the signal yield with q = +1(−1).

TABLE II: CP violation parameters for each B0
→ fCP mode

and from the simultaneous fit for all modes together. The first
and second errors are statistical and systematic uncertainties,
respectively.

Decay mode sin 2φ1 ≡ −ξfSf Af

J/ψK0
S +0.670± 0.029 ± 0.013 −0.015 ± 0.021+0.045

−0.023

ψ(2S)K0
S +0.738± 0.079 ± 0.036 +0.104 ± 0.055+0.047

−0.027

χc1K
0
S +0.640± 0.117 ± 0.040 −0.017 ± 0.083+0.046

−0.026

J/ψK0
L +0.642± 0.047 ± 0.021 +0.019 ± 0.026+0.017

−0.041

All modes +0.667± 0.023 ± 0.012 +0.006 ± 0.016 ± 0.012

Uncertainties originating from the vertex reconstruc-
tion algorithm are a significant part of the systematic
error for both sin 2φ1 and Af . These uncertainties are
reduced by almost a factor of two compared to the previ-
ous analysis [7] by using h for the vertex-reconstruction
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FIG. 2: (color online) The background-subtracted ∆t distri-
bution (top) for q = +1 (red) and q = −1 (blue) events and
asymmetry (bottom) for good tag quality (r > 0.5) events for
all CP -odd modes combined (left) and CP -even mode (right).

TABLE III: Systematic errors in Sf and Af in each fCP mode
and for the sum of all modes.

J/ψK0
S ψ(2S)K0

S χc1K
0
S J/ψK0

L All

Vertexing Sf ±0.008 ±0.031 ±0.025 ±0.011 ±0.007

Af ±0.022 ±0.026 ±0.021 ±0.015 ±0.007

∆t Sf ±0.007 ±0.007 ±0.005 ±0.007 ±0.007

resolution Af ±0.004 ±0.003 ±0.004 ±0.003 ±0.001

Tag-side Sf ±0.002 ±0.002 ±0.002 ±0.001 ±0.001

interference Af
+0.038
−0.000

+0.038
−0.000

+0.038
−0.000

+0.000
−0.037 ±0.008

Flavor Sf ±0.003 ±0.003 ±0.004 ±0.003 ±0.004

tagging Af ±0.003 ±0.003 ±0.003 ±0.003 ±0.003

Possible Sf ±0.004 ±0.004 ±0.004 ±0.004 ±0.004

fit bias Af ±0.005 ±0.005 ±0.005 ±0.005 ±0.005

Signal Sf ±0.004 ±0.016 < 0.001 ±0.016 ±0.004

fraction Af ±0.002 ±0.006 < 0.001 ±0.006 ±0.002

Background Sf < 0.001 ±0.002 ±0.030 ±0.002 ±0.001

∆t PDFs Af < 0.001 < 0.001 ±0.014 < 0.001 < 0.001

Physics Sf ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

parameters Af < 0.001 < 0.001 ±0.001 < 0.001 < 0.001

Total Sf ±0.013 ±0.036 ±0.040 ±0.021 ±0.012

Af
+0.045
−0.023

+0.047
−0.027

+0.046
−0.026

+0.017
−0.041 ±0.012

goodness-of-fit parameter, as described above. In partic-
ular, the effect of the vertex quality cut is estimated by
changing the requirement to either h < 25 or h < 100; the
systematic error due to the IP constraint in the vertex re-
construction is estimated by varying the IP profile size in
the plane perpendicular to the z-axis; the effect of the cri-
terion for the selection of tracks used in the ftag vertex is
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estimated by changing the requirement on the distance of
closest approach with respect to the reconstructed vertex
by±100 µm from the nominal maximum value of 500 µm.
Systematic errors due to imperfect SVD alignment are es-
timated from MC samples that have artificial misalign-
ment effects. Small biases in the ∆z measurement are
observed in e+e− → µ+µ− and other control samples: to
account for these, a special correction function is applied
and the variation with respect to the nominal results is
included as a systematic error. We also vary the |∆t|
range by ±30 ps to estimate the systematic uncertainty
due to the |∆t| fit range. The vertex resolution function
is another major source of sin 2φ1 and Af uncertainty.
This effect is estimated by varying each resolution func-
tion parameter obtained from data (MC) by ±1σ (±2σ)
and repeating the fit to add each variation in quadrature.
The uncertainty in the estimated errors of the parameters
of reconstructed charged tracks is also taken into account.
The largest contribution to the systematic uncertainty in
Af is the effect of the tag-side interference (TSI), which
is described in detail in [18]. Since the effect of TSI has
opposite sign for different CP -eigenstates, there is a par-
tial cancellation in the combined result. Hence the com-
bined TSI systematic is smaller than the systematic in
each individual mode. Systematic errors due to uncer-
tainties in the wrong-tag fractions are studied by varying
the wrong-tag fraction individually in each r region. A
possible fit bias is examined by fitting a large number of
MC events. Other contributions come from uncertainties
in the signal fractions, the background ∆t distribution,
τB0 and ∆md. Each contribution is summarized in Ta-
ble III. We add them in quadrature to obtain the total
systematic uncertainty.
In summary, we present the final sin 2φ1 measure-

ment using the entire Belle Υ(4S) data sample con-
taining 772 × 106 BB̄ pairs. We have reconstructed
b → cc̄s induced B meson decays in three CP -odd
modes (J/ψK0

S , ψ(2S)K
0
S , and χc1K

0
S) and one CP -

even mode (J/ψK0
L). The fit, using common CP -

sensitive parameters for all four modes, yields the val-
ues sin 2φ1 = 0.667± 0.023(stat)± 0.012(syst) and Af =
0.006± 0.016(stat)± 0.012(syst). The results are consis-
tent with previous measurements [6, 7]. These are the
most precise determination of these parameters and so-
lidify the SM reference value used to test for evidence of
new physics beyond the SM.
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