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Abstract

First-principles-based simulations are used to simulate the electrocaloric effect (ECE) in

Ba0.5Sr0.5TiO3 alloys. In analogy with experimental studies we simulate the effect directly and

indirectly (via the use of Maxwell thermodynamics). Both direct and indirect simulations utilize

the same atomistic framework that allows us to compare them in a systematic way and with an

atomistic precision for the very first time. Such precise comparison allows us to provide a bridge

between the atomistic and macroscopic descriptions of the the ECE and identify the factors that

may critically compromise or even destroy their equivalence. Our computational data reveal the

intrinsic features of ECE in ferroelectrics with multiple ferroelectric transitions and confirm the

potential of these materials to exhibit giant electrocaloric response. The coexistence of negative

and positive ECE in one material as well as an unusual field-driven transition between them is

predicted, explained at an atomistic level, and proposed as a potential way to enhance the elec-

trocaloric efficiency.

PACS numbers: 77.70.+a,77.80.-e,77.22.Ej,65.40.G-
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Caloric effects, such as magnetocaloric and electrocaloric effects, have attracted a lot

of attention recently in the context of increasing interest in energy conversion and renew-

able energy materials and devices [1, 2]. ECE, for example, is associated with a reversible

change in temperature under the application or removal of an electric field under adiabatic

conditions. Adiabatic conditions are required to conserve the total entropy which is the

sum of configurational entropy associated with a dipoles’ disorder and thermal (or vibra-

tional) entropy associated with disorder in the dipoles’ kinetic energies [3]. A positive/direct

(negative/inverse) ECE application of an electric field leads to an increase (decrease) in tem-

perature. Quantitatively, ECE is measured by the change in temperature, ∆T = T − T0,

achieved by an application of the electric field ∆E = E − E0. Traditionally, there exists

two approaches to obtain ∆T (∆E): direct and indirect. In the first one ∆T (∆E) is directly

measured under adiabatic conditions. This approach, although extremely desirable, is also

very challenging [4]. The indirect approach is based on the use of Maxwell thermodynamical

relation:
dT

dEi
= −

T

CE

(

∂Di

∂T

)

Ei

, (1)

where Di and Ei are the ith components of the electric displacement field and the electric

field, respectively. CE is the heat capacity under constant electric field. Eq.(1) is a first-

order differential equation with a solution T (E) satisfying the initial condition T (E0) =

T0. In all cases of practical interest, this equation cannot be solved analytically and is

integrated numerically using experimental, theoretical or computational data for DE(T )

and CE . The indirect approach is usually less demanding and, therefore, the dominant

technique for estimating ECE and magnetocaloric effect. One may, however, wonder how

well the macroscopic thermodynamic approach, which is at the heart of Maxwell relation,

describes the ECE which derives its origin from the atomistic order-disorder interplay [3].

ECE is promising for solid state refrigeration technology and has been explored since

1960s [1]. However, the difficulty in developing this technology stems from the fact that

only a very small change in temperature, usually 1-2 Kelvin at most, can be achieved

via such effect. Recently, the interest in ECE was fueled by the reports of giant ECE

in PbTi0.05Zr0.95O3 thin films [5] and ferroelectric polymers [6]. The giant effects (of about

12 K) were predicted in the framework of indirect approach. Direct measurements reported

both giant [7–9] and moderate [4, 10, 11] values. These makes us wonder if the giant ECE
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occurs for a wide range of ferroelectric materials and if the indirect approach provides a

reliable basis for caloric effect estimation. For example, Ref. 10 reported good agreement

between the magnitude of ∆T obtained directly and indirectly in BaTiO3, but qualitative

differences were observed in the behavior of ∆T (T ). Another recent work [9] focused on

ferroelectric polymers and compared their directly measured ∆T with that extrapolated

from the indirect measurement of Ref.6. They found that both predictions agree well for the

two temperatures considered. At the same time the Maxwell equation failed to reproduce

the direct measurements in relaxors [7] confirming the earlier theoretical predictions of in-

applicability of Maxwell relations to study nonergodic systems with irreversibility [12]. The

aforementioned questions are of ultimate importance since the expectations of giant ECE in

ferroelectrics are the driving force behind the increasing scientific and technological efforts

in this direction [1, 2].

In this Letter, we develop and use accurate first-principles-based simulations to answer

these important questions from an atomistic point of view. In particular, we develop a

computational technique that allows both direct and indirect simulations of ECE within the

same atomistic framework. We then use this tool to provide a first systematic comparison

between ECE estimates obtained from both direct and indirect approaches which will allow

us to bridge the macroscopic and atomistic descriptions of ECE. The results of our direct

atomistic simulations are then used to explore the intrinsic features of ECE in ferroelectrics

with multiple transitions.

We simulate Ba0.5Sr0.5TiO3 disordered alloy since it exhibits a rich variety of ferroelectric

transitions and was predicted to have good electrocaloric properties near the room tem-

perature [3]. This material undergoes three ferroelectric transitions: paraelectric cubic to

ferroelectric tetragonal at TC = 250 K with a preferred polarization direction along <100>,

ferroelectric tetragonal to ferroelectric orthorhombic at T = 180 K with a preferred polar-

ization direction along <110>, and orthorhombic to rhombohedral at T =140 K with a

preferred polarization direction along <111> [13]. The bulk sample of this material was

modeled by a 16x16x16 simulation supercell (20480 particles) periodic along three Cartesian

directions and with Ba, Sr atoms distributed randomly among individual unit cells. x-, y-,

and z-axes were chosen along [100], [010], and [001] crystallographic directions, respectively.

The potential energy of the sample Upot is given by the first-principles-based effective Hamil-

tonian of Ref.14 which is defined in terms of the following degrees of freedom: local mode
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vectors (proportional to the local dipole moments in the sample’s unit cells), inhomogeneous

and homogeneous strain variables (that describe the local deformations of the unit cells).

This Hamiltonian reproduces accurately the experimental composition-temperature phase

diagram of disordered BaxSr1−xTiO3 solid solution [14], dynamical properties of BaTiO3 [15],

provide accurate predictions for BaTiO3/SrTiO3 superlattices [16] and have been used re-

cently to study a variety of properties of BaxSr1−xTiO3 alloys [3, 17, 18]. For all simulations

below the Curie point the sample is in a monodomain state.

To model the electrocaloric response of this sample in the framework of the indirect ap-

proach we follow a procedure which closely simulates the experimental route [19, 20], namely,

we slowly cool the sample in the presence of an applied dc electric field E. Technically, for

a given field E in the range of 0-1000 kV/cm the sample is annealed from T = 450 K down

to T = 5 K in steps of 5 K. We use 3×105 sweeps of the Metropolis Monte Carlo (MC)

algorithm [21] to equilibrate the sample at desired T and E. The equilibrium values of

polarization is then calculated for each temperature and plotted in Fig.1(a). The electric

field modifies the character of phase transition from first-order-like to a highly diffused and

also shifts the Curie point up. The polarization curves were fitted with up to 8th degree

polynomial which was used to calculate the pyroelectric coefficients (∂Pi/∂T )Ei
[29]. Note

that, for strongly polar materials, such as ferroelectrics, D ∼ P [19], and the derivative

(∂Di/∂T )Ei
in Eq.(1) can be replaced with (∂Pi/∂T )Ei

. The heat capacity at a given field

E was calculated from the internal energy of the unit cell as: CE = (
∂Upot

E

∂T
+ 15

2
kB)/V . Here

Upot
E is the potential energy at a given electric field E, kB is the Boltzmann constant, V

is the volume of the unit cell. Factor, 15

2
, reflects the fact that there are five atoms in the

unit cell. Upot
E as a function of temperature was obtained from our MC computations. At

zero field our computed heat capacity CE=0 = CP =2.58 MJ/Km3 agrees well with the ex-

perimentally reported heat capacity CP =2.53 MJ/Km3 obtained at constant pressure P in

barium titanate-based ceramics [22] [30]. The computational values of heat capacities and

pyroelectric coefficients were used in Eq.(1) to calculate dT/dE. These data are shown by

lines in Fig.1(b) and constitute the prediction from our indirect approach.

Next we turn to a direct approach to compute dT/dE as a function of the electric field

and temperature. To derive our approach for direct ECE simulation, we start with the

enthalpic form of the first law of thermodynamics: dH = dQ − xidXi − DidEi, where

H = U − Xixi − EiDi is the enthalpy. Here dQ is an infinitesimal quantity of heat, U is
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the internal energy, Xi and xi are the stress and strain, respectively. Since the caloric effect

of interest is an adiabatic process (dQ = 0) that occurs under slowly varying electric fields

(E ≈ const) and constant stresses/pressure (dXi = 0), it can be considered as an isoenthalpic

process H = const. To simulate this process we follow the spirit of microcanonical MC

simulations [23] and introduce extra degrees of freedom, called “demons” (analogous to

the conjugate momenta in the microcanonical formulations), that absorb/carry/redistribute

energy to achieve H = const simulations. In our simulations H = (Upot +
∑ndem

i=1
Edem

i −

V Xixi − Z∗E
∑

j uj)/V = H +
∑ndem

i=1
Edem

i , where Upot is the potential energy given by

the effective Hamiltonian [14], Edem
i is the energy carried by the ith demon, Z∗ is the Born

effective charge, uj is the local mode at the site j. H is the enthalpy less the energy of

all demons. We include ndem = integer[(CE=0 − ∂Upot/∂T )/kB] = 8 demons per unit cell

to correctly reproduce the computational CE=0. At each isoenthalpic MC step an update

for a degree of freedom is attempted and compared with the energy of a randomly (or

sequentially) picked demon Edem
i . If Edem

i −∆H > 0 the move is accepted and H → H+∆H

and Edem
i → Edem

i − ∆H . One MC sweep attempts to update all the degrees of freedom

sequentially. The temperature is calculated after each sweep as T =
∑ndem

i=1
Edem

i /kBndem

and is typically averaged over 20,000 sweeps.

In our direct approach we first equilibrate the sample at the desired temperature T0

using 3×105 MC sweeps of Metropolis algorithm. We next switch to H = const simulations

and slowly increase the electric field from 0 up to 1000 kV/cm at a rate of 0.001 kV/cm

per one MC sweep. The temperature T at a given field E is calculated from the average

demon energy obtained at the same field. The associated temperature changes ∆T = T −

T0 for some T0 are given in the inset to Fig.2. The dependencies ∆T (∆E) were fitted

with up to 5th degree polynomials which were used to calculate the derivatives dT/dE.

The data points from these calculations are shown in symbols in Fig.1(b). This figure

indicates a remarkable agreement between the data for the electrocaloric response dT/dE

obtained from the direct and indirect approach for all investigated temperatures and electric

fields. It further reveals the strong dependence of dT/dE on both the electric field and the

temperature. One important consequence of this strong dependence is that a very fine

mesh of points Pi(Ti, Ei) is required to accurately integrate Eq.(1), especially at lower fields.

Another important consequence is that for some materials (that are similar to the ones

studied here) the approximation ∆T = −
∫ E0+∆E

E0

T
CE

(

∂Di

∂T

)

Ei
dE is likely to be crude and,
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therefore, accurate numerical integration techniques should be used instead. We, therefore,

conclude that the indirect approach based on Maxwell relation provides an accurate and

reliable basis for electrocaloric response computations as long as the differential equation

is properly integrated. This conclusion can be further generalized into the equivalence

of macroscopic and atomistic descriptions of the ECE for the quantitative estimates of

electrocaloric ∆T .

Next we will focus on the predictions of ∆T from our direct approach given in Fig.2.

Note that the electric field was applied along the polarization direction. Firstly, we observe

that indeed a giant electrocaloric response of 12 K can be obtained in ferroelectrics under

sufficiently large fields as was predicted from recent experiments [5, 6]. Our data further

indicate that ∆T peaks near the transition temperatures which is the consequence of the

larger configurational disorder associated with these points and is in agreement with previous

reports [24–27]. For a given ∆E, ∆T is always maximized near the Curie point TC . For

larger fields with ∆E applied above TC , ∆T shows considerably less dependence on T0 as

compared with the data obtained for smaller fields. For instance, for ∆E ≥ 500 kV/cm

the alloy exhibits good electrocaloric properties in a wide range of temperatures above

TC . This is a consequence of the diffused character of the phase transition under large

electric fields. This feature is desirable for solid-state refrigeration which relies on good

caloric response in a wide temperature range. All our findings are in good qualitative

agreement with experimental data obtained for Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals

[24, 28]. Note, that a quantitative comparison is not possible since different materials and

electric fields have been used.

Interestingly, one striking feature differentiates between our first-principles-based data

and experimental findings of Ref.24. We do not find the negative electrocaloric response

that was reported for some temperatures in the ferroelectric phase of <011>-oriented

Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals [24]. Our atomistic simulations reveal that this

negative effect originates from noncollinearity between polarization and electric field. In-

deed, if an electric field is applied along the polarization direction, it orders the dipoles,

thus decreasing the configurational entropy. This leads to an increase in the temperature

and positive ECE. If, however, a field is applied in the direction different from the polar-

ization direction, it creates disorder since some of the dipoles flip to align with the electric

field. As a result, the configuration entropy will increase causing the temperature to drop
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(negative ECE). Indeed, Fig.2 confirms that if the electric field is applied along the polar-

ization direction then ∆T is always positive. To introduce an angle between the electric

field and polarization we apply a field along the [001] direction and repeat all simulations.

The angle between this field and the polarization is 0◦ in the tetragonal phase, 45.0◦ in the

orthorhombic phase, and 54.7◦ in the rhombohedral phase. To fully understand the effect

of noncollinear electric field on the ECE we start by analyzing how this field influences the

ferroelectric phases and the transition temperatures. We found that noncollinear electric

field may; 1) induce transition between different ferroelectric phases; 2) lead to formation

of low-symmetry monoclinic phases and; 3) shift the transition temperatures. An exam-

ple of this is given in Fig.3(a). We first notice that for the temperatures below 155 K

the noncollinear electric field induces monoclinic phases which are associated with positive

derivatives ∂Pz/∂T in the temperature region of 90-155 K. This positive derivatives give rise

to negative ECE (see Fig.3(b) for an example) in accordance with Eq.(1). Moreover, the

comparison of our data for collinear and noncollinear fields (see Fig.3(b) for an example)

reveals that the sign of ECE is controlled by the electric field’s direction. Secondly, Fig.3(a)

indicates that the transition from ferroelectric tetragonal phase to ferroelectric orthorhombic

phase occurs at temperature 155 K which is 25 K below the same transition temperature

in the absence of the electric field. This is a consequence of a field-induced transition from

orthorhombic to tetragonal phase [31] that occurs for the temperatures in between 155 K

and 180 K when an electric field of 300 kV/cm is applied. Interestingly, at the point of this

transition, the polarization rotates towards the electric field which reduces configurational

entropy and results in a sign change for ECE going from negative to positive (see Fig.3(b),

solid circles). The latter is in excellent qualitative agreement with the recent experimental

findings [24]. We, therefore, conclude that the sign of ECE can be efficiently controlled by

the direction of applied electric field. This could open new ways to enhance electrocaloric

efficiency by combining positive and negative ECE in one refrigeration cycle (see inset to

Fig.3(b), for example).

In summary, we have employed atomistic first-principles-based simulations to reveal that

both direct and indirect approaches yield the same qualitative and quantitative predictions

for the ECE. In practice, however, the accuracy of indirect approach is limited by the

accuracy of numerical integration of the Maxwell differential equation(s). We have also

reported the intrinsic features of the ECE in ferroelectrics with multiple transitions which
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include the potential to exhibit giant electrocaloric response under large electric fields and

the coexistence of both positive and negative ECE in one material. The origin of negative

ECE is traced to the noncollinearity between the electric field and the polarization which

could lead to new ways to enhance the electrocaloric efficiency.
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FIG. 1: (color online). (a) The dependencies P (T ) for electric fields in the range 0-1000 kV/cm. (b)

The dependencies of dT/dE on the temperature for electric fields 100-900 kV/cm (in 100 kV/cm

increments). The electric field is applied along the polarization direction. The predictions from

direct and indirect approaches are shown with symbols and lines, respectively. The arrows indicate

the direction of the electric field increase.

FIG. 2: (color online). The electrocaloric temperature change ∆T = T − T0 as a function of

initial temperature T0 for some fields ∆E = E −E0 applied along the polarization direction. Here

E0 =0 kV/cm. Dashed lines indicate the computational zero-field transition temperatures. Inset:

Dependencies ∆T (∆E) for some selected T0.

FIG. 3: (color online). (a) Dependence of the average polarization’s components < Px >, < Py >,

and < Pz > on the temperature under an electric field of 300 kV/cm applied along the [001]

direction. (b) The dependencies ∆T (∆E) for two selected temperatures T0. Diamonds (circles)

indicate data obtained when the electric field is collinear (noncollinear) to the polarization. The

inset shows an idealized refrigeration cycle that utilizes both positive and negative ECE. The cycle

begins (step 1) with application (increase) of a collinear electric field E|| which is followed by a heat

exchange with a sink under constant E|| (step 2). At step 3 E|| is removed (decreased) adiabatically

resulting in the drop of the temperature below T0 via positive ECE. At step 4 a noncollinear field

E∠ is applied (increased) producing an additional drop in the temperature via negative ECE. At

step 5 the system returns to the original T0 by absorbing the heat from the load. The cycle closes

via adiabatic removal (decrease) of E∠ (step 6) followed by the heat exchange with the sink (step 7).

The ∆T = T4 − T0 of the double cycle exceeds that of a single cycle which utilizes either positive

ECE (∆T = T3 − T0) or negative ECE (∆T = T4 − T3).
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