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Abstract

The phonon-assisted interband optical absorption spectrum of silicon is calculated at the quasi-

particle level entirely from first principles. We make use of the Wannier interpolation formalism

to determine the quasiparticle energies, as well as the optical transition and electron-phonon cou-

pling matrix elements, on fine grids in the Brillouin zone. The calculated spectrum near the onset

of indirect absorption is in very good agreement with experimental measurements for a range of

temperatures. Moreover, our method can accurately determine the optical absorption spectrum of

silicon in the visible range, an important process for optoelectronic and photovoltaic applications

that cannot be addressed with simple models. The computational formalism is quite general and

can be used to understand the phonon-assisted absorption processes in general.
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The phonon-assisted absorption of light in materials is an important optical process both

from a fundamental and from a technological point of view. Intraband light absorption

by free carriers in metals and doped semiconductors requires the additional momentum

provided by the lattice vibrations or defects, while phonon-assisted processes determine the

onset of absorption in indirect-band-gap semiconductors (Fig. 1). Moreover, the value of the

direct band gap in silicon (3.4 eV[1]) is large and precludes optical absorption in the visible.

However, silicon is a commercially successful photovoltaic material because of the indirect

optical transitions that enable photon capture in the spectral region between the indirect

(1.1 eV[2]) and direct band gaps.

Despite their importance, at present, only a very limited number of first-principles studies

of phonon-assisted optical absorption spectra exist. Ab initio calculations of direct optical

absorption spectra including excitonic effects have already been performed for Si and other

bulk semiconductors [3] and the underlying methodology is presently well established [4, 5].

Phonon-assisted absorption studies are more involved, however, and the associated compu-

tational cost is much higher than the direct case. The calculation of the indirect absorption

coefficient involves a double sum over k-points in the first Brillouin zone (BZ) to account

for all initial and final electron states. In addition, these sums must be performed with a

very fine sampling of the zone to get an adequate spectral resolution. The computational

cost associated with these BZ sums is in fact prohibitive with the usual methods. Phonon-

assisted absorption calculations have been done for the special case of free-carrier absorption

in semiconductors[6], where the carriers are initially limited to a region near the Γ point of

the first BZ, but a full calculation using brute-force methods for the general case remains

beyond the reach of modern computers.

The difficulty of zone-integral convergence can be addressed with the maximally-localized

Wannier function interpolation method[7]. Using this technique, the quasiparticle energies[8]

and optical transition matrix elements[9] can be interpolated to arbitrary points in the BZ at

a minimal computational cost. Moreover, this interpolation method has been generalized[10]

to obtain the electron-phonon coupling matrix elements between arbitrary pairs of points in

the first BZ.

In this Letter, we developed a first-principles computational method, based on a Wannier-

Fourier interpolation formalism, to calculate the phonon-assisted optical absorption spectra

of materials from first principles and applied it to the case of interband absorption in sil-
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icon. The calculated spectra near the absorption onset are in very good agreement with

experimental results for a range of temperatures. Moreover, we were able to reproduce the

absorption spectrum in the energy range between the indirect and direct band gaps (1.1 –

3.4 eV), a spectral region that cannot be accessed by standard model calculations. This

region covers the entire visible spectrum and is important for optoelectronic applications.

The computational formalism is quite general and can be used to predict and analyze the

phonon-assisted optical absorption spectrum of any material.

To calculate the phonon-assisted absorption coefficient, we use the Fermi’s golden rule

expression[6, 11]:

α(ω) =2
4π2e2

ωcnr(ω)

1

Vcell

1

NkNq

∑
νijkq

|λ · (S1 + S2)|2

× Pδ(εj,k+q − εik − ~ω ± ~ωνq), (1)

where ~ω and λ are the energy and polarization of the photon and nr(ω) is the refractive

index of the material at frequency ω. The generalized optical matrix elements, S1 and S2,

are given by

S1(k, q) =
∑
m

vim(k)gmj,ν(k, q)

εmk − εik − ~ω + iΓm,k
, (2)

S2(k, q) =
∑
m

gim,ν(k, q)vmj(k + q)

εm,k+q − εik ± ~ωνq + iΓm,k+q

, (3)

and correspond to the two possible paths of the indirect absorption process (Fig. 1). They are

determined in terms of the velocity (v) and electron-phonon coupling (g) matrix elements,

as well as the real (εnk) and imaginary (Γnk) parts of the quasiparticle self-energies. The

factor P accounts for the carrier and phonon statistics,

P =

(
nνq +

1

2
± 1

2

)
(fik − fj,k+q).

The upper (lower) sign corresponds to phonon emission (absorption).

The Kohn-Sham eigenvalues were calculated within the local density approximation

(LDA)[12] to density functional theory using a plane-wave pseudopotential approach[13]

with a kinetic energy cutoff of 35 Ry. The ground state charge density was determined on

a BZ grid of 14×14×14 k-points. Quasiparticle energies within the GW approximation for

the self-energy operator[14] were determined on a 6×6×6 grid and interpolated through-

out the BZ through the use of the maximally-localized Wannier function formalism[7]. We
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included 34 electronic bands in the coarse-grid calculation and extracted 26 Wannier func-

tions, which reproduce the LDA bandstructure 10 eV below and 30 eV above the Fermi

level. The interpolated quasiparticle band structure of silicon is shown in Figure 1. The

indirect (1.3 eV) and direct (3.3 eV) quasiparticle band gaps are in good agreement with

previous calculations[14] and experiment. The same formalism has been used to interpolate

the velocity matrix elements[4, 9], including the renormalization required [15] after the GW

corrections. The real (ε1) and imaginary (ε2) parts of the dielectric function and the refrac-

tive index due to direct transitions, required in Eq. 1 to determine the absorption coefficient,

were also determined at the quasiparticle level for a range of photon frequencies. Lattice dy-

namics are calculated using density functional perturbation theory[16]. The electron-phonon

coupling matrix elements are calculated on the same coarse grid of electronic points, while

the dynamical matrices and phonon-potential perturbations are calculated on a 6×6×6 grid

of momentum-space vectors[10] and interpolated for arbitrary pairs of points in the first

BZ using the epw code[17]. For the calculations of the velocity and electron-phonon cou-

pling matrix elements we used the LDA wave functions, because their overlap with the

GW-corrected ones is better than 99.9%[14].

Phonon-assisted optical absorption in indirect-band-gap semiconductors occurs for pho-

tons with energies greater than the indirect band gap minus (plus) the energy of the phonon

absorbed (emitted) to assist the transition. The onset of indirect absorption is calculated

over a wide range of temperatures in bulk silicon through Eq. 1 and the results are shown in

Fig. 2. Each curve displays a characteristic knee, arising from the different energy onsets of

the phonon-absorption and phonon-emission terms, which becomes smoother with increas-

ing temperature. The calculated data are in good agreement with experimental results[18]

for all temperatures measured. For these calculations, we used fine grids of 40×40×40 for

the k and q sums in Eq. 1, respectively. These fine grids yield converged optical spectra

with an energy resolution of 14 meV, which is quite small and necessary to resolve the fine

features near the absorption onset. Although the experimental data near the edge can be

fit with simple parameterized forms[18], to our knowledge they have not been calculated

entirely from first principles previously.

In addition to the absorption onset, we are interested in the phonon-assisted absorption

spectrum in the energy range between the indirect and direct band gaps, covering the visible

range. This spectral region involves transitions between valence and conduction band states
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FIG. 1. (a) Quasiparticle band structure of silicon calculated within the GW approximation and

interpolated with the Wannier formalism. The arrows indicate the lowest-energy phonon-assisted

optical absorption processes across the indirect band gap. Solid lines denote optical transitions,

while dashed lines correspond to electron-phonon scattering events. The two terms, S1 and S2, of

Eq. 1 are represented by paths (1) and (2) respectively. (b) Density of electronic states versus the

quasiparticle energy. The density of states of the occupied bands has been highlighted.

away from the band extrema and, as a consequence, cannot be modeled with simple parame-

terized forms. On the contrary, because of the large number of electronic states and phonon

modes involved, first-principles calculations are the only computational tool that can access

this spectral region. The interpolation of the ab initio quantities within the Wannier-Fourier

formalism makes the calculation feasible on modern computers. The calculated spectra with

an energy resolution of 30 meV (Fig. 3) converge with zone-sums of 24×24×24 electronic

and 24×24×24 phonon points. The imaginary part of the electron self-energy for the inter-

mediate electronic states was set to a constant value (100 meV). However, the calculated

data are not very sensitive to the particular value of the quasiparticle lifetime for photon

energies in this spectral region.

To facilitate comparison with experiment, the theoretical absorption spectra of Figs. 2

and 3 have been rigidly shifted to the left along the energy axis by 0.15–0.23 eV in order to

match the onset of the experimental absorption curves. This shift is needed to account for

the numerical difference between the calculated and experimental band gap, and for finite-

temperature effects on the quasiparticle energies which we have not considered explicitly.

Although the GW method is the most accurate first-principles computational formalism

for the calculation of quasiparticle properties presently available, it typically yields abso-
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FIG. 2. Onset of the phonon-assisted optical absorption in silicon, as a function of photon energy

and temperature. The theoretical results (solid lines) are in good agreement with experiment

(dashed lines). Experimental data are from Ref. 18. The theoretical curves have been shifted

horizontally to match the onset of the experimental spectra.

FIG. 3. Calculated (solid lines) and experimental (circles) absorption coefficient of silicon in the

energy range between the indirect and direct gaps, for two temperatures. Experimental data are

from Ref. 19. The theoretical spectra have been shifted to match the experimental absorption

onset.

lute quasiparticle energies accurate to 0.1 eV. In our particular case, we found that the

calculated band gap is also within this error bar larger than the experimentally measured

value. We note that no other first-principles method is presently available to guarantee a

more accurate result. Moreover, the only temperature dependence we considered in our

calculations is for the phonon occupation numbers. However, the quasiparticle energies
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themselves are temperature-dependent because of additional finite-temperature effects, such

as lattice expansion and electron-phonon renormalization [10, 20–24]. We found that the

thermal-expansion correction to the indirect band gap is small and amounts only to a 2.5

meV increase of the LDA band gap as the lattice constant increases from the 0 K to the

400 K value [25], in agreement with Ref. 22. On the other hand, empirical pseudopotential

calculations have shown that electron-phonon renormalization effects are stronger and de-

crease the band gap of silicon by approximately 0.05–0.1 eV for temperatures in the range

0–400 K [22]. We note that the determination of electron-phonon-coupling corrections to

quasiparticle energies from first principles is still a subject of ongoing research [23]. The

cumulative effects of this electron-phonon band-gap renormalization (0.05–0.1 eV) and the

intrinsic accuracy of the GW method (order of 0.1 eV) explain the difference between the

onsets of the theoretical and experimental data that we need to take into account when

comparing our calculated spectra to experiment. Moreover, this electron-phonon coupling

correction to the quasiparticle energies may have an effect on the shape of the absorption

spectra near the onset of indirect transitions in Fig. 2.

Although excitonic effects, arising from the electron-hole interaction, are potentially im-

portant for optical processes and in general affect the direct absorption spectra even for

photon energies far from the absorption edge[4], we found that they are not as important

for the case of indirect absorption. Sharp features that appear near the onset of indirect

absorption are attributed to excitonic effects[18, 26]. Our calculations, however, are based

on quasiparticle theory and do not account for the electron-hole interaction that gives rise

to these excitonic features. Nevertheless, the calculated absorption spectra are in very good

quantitative agreement with experimental data, pointing to a weaker role of the electron-hole

Coulomb interaction for the case of indirect optical transitions. This is probably because the

band-extrema wavefunctions in indirect-gap materials are located at different points of the

BZ and hence the wavefunction overlap, which determines the magnitude of the Coulomb

interaction between them, is small. Therefore, the phonon-assisted spectra can to a large

extend be explained at the quasiparticle level of theory, without the need to account for

excitonic effects.

The computational formalism we developed is based on first-principles methods and can

be used to study the fundamental physics of phonon-assisted absorption in materials in

general. It can complement experimental studies to shed light on the microscopic phonon-
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assisted transition mechanisms and address questions that are not accessible by experimental

techniques. Moreover, the method can be used to analyze the phonon-mediated optical

properties of technologically important materials for optoelectronic applications. E.g., it

can investigate the role of phonon-assisted optical processes in silicon photonics, or it can

predict the photovoltaic performance of indirect-band-gap materials.

In conclusion, we used a Wannier-Fourier interpolation technique to calculate the phonon-

assisted optical absorption spectra of silicon at the quasiparticle level. The calculated spectra

are in very good agreement with experimental measurements, both near the absorption

onset and in the spectral region between the indirect and direct band gaps for any lattice

temperature. The first-principles computational formalism is very general and can be used

to study the fundamental physics of phonon-assisted absorption, as well as the phonon-

mediated optical properties of optoelectronic materials.
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