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Rigorous definition of oxidation states of ions in solids
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We present justification and rigorous procedure for electron partitioning among atoms in extended
systems. The method is based on wavefunction topology and the modern theory of polarization,
rather than charge density partitioning or wavefunction projection, and, as such, re-formulates
the concept of oxidation state without assuming real-space charge transfer between atoms. This
formulation provides rigorous electrostatics of finite extent solids, including films and nanowires.

PACS numbers: 71.15.Dx,77.22.Ej

The concept of oxidation state (OS) is widely used to
predict chemical and spectroscopic properties of com-
pounds, based solely on the atomic identities and the
topology of their bonding [1]. For instance, the electro-
statics of solids is usually described by a simple ionic
model replacing atoms with point charges equal to the
OS. OS therefore plays an important role in ionic crystals
whose properties are greatly influenced by electrostatics,
due to the close packing of ions and the slow decay of the
Coulomb interaction with distance.

Real space electron density partitioning among atoms
is a traditional way of obtaining OS. It can also be used to
approximate electrostatics and dispersion [2] in molecules
and extended systems. However, with the development
of wavefunction-based quantum mechanics, it has become
widely accepted that there is no rigorous justification for
such a partitioning, due to the continuous electronic dis-
tribution. In fact, it has been demonstrated recently that
the assumption about physical transfer of charge upon
changing OS is in some cases incorrect due to a “nega-
tive feedback” mechanism [3, 4].

Another popular method of assigning OS is the projec-
tion of wavefunctions to localized atomic orbitals [5, 6].
which removes the dependence on charge density. How-
ever, it suffers from dependence on basis set and generally
produces non-integer OS. A projection-based approach
provides a way to round fractional occupation into inte-
ger OS in metal-ligand systems and avoids the “negative
feedback”, but work when strong metal-metal bond is
present or the ligand (electron donor) OS is desired [7].

From the examples above, it seems that there is no
universal method to assign integer charges to atoms de-
terministically based on atomic configuration and elec-
tronic structure. Yet in another context, namely elec-
trolysis, ionic charge appears exactly in quanta. It has
also been shown theoretically that the current associated
with an atom moving in a torus-like insulator loop is due
to motion of integer charges [8]. This sheds light on the
the idea that OS, being a ground state property, is mea-
surable in a process that involves moving the atom in
interest.

The question still remains of the appropriate quantity

to be measured or calculated in order to evaluate OS.
While both charge density and projected occupation fail
to play this role, the modern Berry phase description
of polarization (or equivalently, localized Wannier func-
tions) has been used to model interface charge [9], surface
stoichiometry [10] and other properties greatly influenced
by bulk electrostatics [11], making it a good candidate for
further study.

In this paper, we employ the ideas of quantized charge
transport and modern theory of polarization to develop
a rigorous methodology for distributing electrons among
ions in the solid. This scheme is based solely on topology
of electronic states rather than electron density. It also
establishes a connection between the concepts of oxida-
tion state and charge quantization.

For any periodic solid, the polarization change ∆~P
along an arbitrary path in a parameter space (e.g., in
the space of nuclear coordinates in the adiabatic approx-
imation) can be computed modulo e~R/V (where ~R is a
lattice vector, and V is the volume of the unit cell) from
knowledge of the system at initial and final points, pro-
vided the system remains insulating at every point of the
path [12, 13]. Furthermore, the uncertainty can be re-
moved by considering smaller intervals along the path.
Here, we focus our attention on a special subset of such
paths, namely, the displacement of an atomic sublattice
by a lattice vector ~R. Since the Hamiltonian returns to
itself, the polarization can change only by

∆~P =
e

V

3∑
i=1

ni ~Ri (1)

where ni are integers, and ~Ri are the lattice vectors defin-
ing the unit cell.

(i) Under certain conditions, ∆~P does not depend on
the details of the path, as long as the system stays insu-
lating at every point on the path. We note that it is now
well established that the derivatives of polarization with
respect to nuclear positions,

Z∗i,αβ = V
∂Pα
∂<iβ

∣∣∣∣
E=0

(2)
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called Born effective charges, are gauge invariant [14].

Although the polarization ~P itself is not gauge invariant,
we can define the gauge invariant change [15] in polar-

ization ∆~P along a path C in the configuration space <
as follows:

∆Pα =
1

V

∑
iβ

∫
C

Z∗i,αβd<iβ (3)

The sufficient (but maybe not necessary) conditions for
∆Pα to be independent of the path are given by Stokes’
theorem. Let us consider two different paths connect-
ing two points in the configurational space. If there is
at least one hyper-surface bounded by the closed loop
formed by these two paths, on which Z∗i,αβ are differen-
tiable at every point, then, according to Stokes’ theorem,
the integral over the closed loop is zero, so ∆~P does not
depend on the path. The Born effective charges are not
differentiable in insulator-metal transition regions of the
configurational space. Therefore, ∆~P is the same along
any two insulating paths that can be continuously de-
formed to each other without crossing a metallic region.

It is interesting to note that model systems can be
constructed, in which the above condition is not satis-
fied. In such systems, a closed loop in a parameter space
can result in electron transfer, leading to quantum adia-
batic electron transport [13, 16–18] without net nuclear
current. Since we are interested in identifying ions in
solids here, we limit ourselves to considering atomic dis-
placements whose length is larger than the electron lo-
calization length, and the displacements of other atoms
are all localized. This is always achievable by choosing a
large enough unit cell to prevent interactions between dis-
placed sublattices. Two insulating paths in such “dilute
limit” cannot form a loop that leads to electron transfer,
because electrons in an insulator are localized [19], and
such electron transfer would mean that at some point on
the path there would be delocalized electrons in insulat-
ing media. This is not possible without crossing the band
gap and causing a metallic state on the loop. Thus, for
our purposes, it is enough to find only one insulating path
in parameter space. Indeed, while atoms could move in
different environments along two different paths, the va-
cancies left behind would stay in essentially the same en-
vironment, but would have different charges during some
parts of the two paths, if the charge transferred by the
same atom along the two paths were different. If the sys-
tem stays insulating along path 1 for which the vacancy
has larger number of electrons, it cannot stay insulating
also along path 2, because extra electrons should cross
the band gap at some point along path 2.

(ii) ∆~P is parallel to ~R, the lattice vector by which the

sublattice is displaced. Choose a unit cell defined by ~R
and two other lattice vectors ~R2 and ~R3. A supercell
for the same physical crystal can be defined by lengthen-
ing the unit cell along ~R2 by a factor of m, but keeping

the same dimensions along ~R and ~R3. The supercell con-
tains the original sublattices plus their images at k ~R′2/m,

(k = 1, 2, . . . ,m− 1), where ~R′2 = m~R2 is the new lattice
vector, and the volume of the supercell is increased to V ′

= mV . If we move all of these sublattices (successively
or together), the situation is equivalent to the previous

one, and ∆~P is the same. But if we move one of these
sublattices by ~R, the new polarization change

∆~P ′ =
e

V ′

(
n′ ~R + n′2 ~R

′
2 + n′3 ~R3

)
(4)

must be ∆~P/m by symmetry. Thus,

∆~P ′ =
e

mV

(
n′ ~R + mn′2 ~R2 + n′3 ~R3

)
=

1

m

e

V

(
n~R + n2

~R2 + n3
~R3

)
=

1

m
∆~P (5)

Since ~R, ~R2 and ~R3 are linearly independent, it imme-
diately follows that n′ = n, n′2 = n2/m, and n′3 = n3.
Since n2 must be divisible by every integer m, we get
n2 = 0. Similarly, we can prove that n3 = 0. Therefore
displacement of a sublattice by ~R creates a polarization
change ∆~P = Ne~R/V , directed along ~R.

(iii) The quantity which we deem as oxidation state

N =
V

e

∆~P · ~R
~R2

(6)

is always an integer. This is evident from the conclusion
of (ii): ∆~P = Ne~R/V . Since polarization is proportional

to the dipole moment of the unit cell, ∆~P is the change
in the dipole moment upon transfer of an atom. This
change is directed along the vector connecting initial and
final positions of the atom, which can be interpreted as
the change in dipole moment due to transfer of a constant
charge Ne. Note also that according to (i) N is the same
regardless of particular path of sublattice displacement.

Moreover, in the Berry phase expression, polariza-
tion can be written in terms of Wannier function cen-
ters (WCs) [12, 20]. This allows for mapping of wave-
functions to point charges and restoring the classic ionic
model. The above conclusions then imply that transfer-
ring an atom by a lattice vector results in transferring
some of the WCs by the same lattice vector, while the
rest of the WCs remain in the starting unit cell. The
Berry phase of the wavefunctions carries the information
on how many WCs move together with any particular
atomic sublattice. In this framework, the physical mean-
ing of OS defined in this method parallels the traditional
definition as partitioning electrons (WCs) to atoms.

(iv) The value of N is the same, regardless of which

lattice vector ~R is chosen for sublattice displacement. N
in equation (6) depends only on the atomic species and

its environment. Assume a unit cell defined by ~R1, ~R2

and ~R3 exists, for which N along ~R1 and ~R2 are different
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FIG. 1: Oxidation state N for hydrogen (a) or oxygen (b) in the ice model and for Li or H in LiH (c).

for a given sublattice. Consider sequential displacements
of the sublattice first along ~R1, and then along ~R2. Ac-
cording to the proof above, the total polarization change
∆~P should be directed along ~R1 + ~R2. However, since
∆~P is equal to the sum of polarization changes ∆~P1 and
∆~P2 along ~R1 and ~R2, the total polarization change ∆~P
= ∆~P1 + ∆~P2 = N1e~R1/V + N2e~R2/V cannot be par-

allel to ~R1 + ~R2 if N1 and N2 are different, hence N1 =
N2.

To summarize, while the polarization for an insulator
is defined modulo a quantum e~R/V , the change in po-
larization is well-defined, and the oxidation state N of
an atom determines the number of polarization quanta
within this gauge-invariant change as the corresponding
sublattice is moved by a lattice vector ~R.

These four observations provide the basis for our defini-
tion of ions in solids. In the dilute limit, this formulation
provides a rigorous connection between polarization and
oxidation state associated with a particular sublattice,
as well as a tractable procedure for electron partitioning
among the ions in a solid. The partitioning is not based
on spatial proximity of WCs to a given nucleus, but rig-
orously derived from the topology of electronic states.
Note that the dilute limit provides a sufficient condition
of the validity of (ii) to (iv), but may not be necessary.

To illustrate this new methodology, we calculate OS
for atoms in ice, LiH, BaBiO3 and Sr2FeWO6. We per-
form DFT calculations using the norm-conserving non-
local pseudopotential plane wave method. The electronic
structure of the first two materials is calculated with
the generalized gradient approximation (GGA) to the
exchange-correlation functional, as implemented in the
Abinit package [21, 22]. The local density approxi-
mation (LDA) with the Hubbard U parameter, as im-
plemented in the Quantum-Espresso package [23], is
used to calculate the electronic structure of BaTiO3 and
Sr2FeWO6.

Water molecules in ice are rearranged for simplicity.
Namely, each 4 Å × 4 Å × 3 Å tetragonal unit cell con-
tains one water with H-O-H of 90◦ and O-H bond lengths
of 1 Å. The oxygen atom is placed at the origin, and the
hydrogen atoms are on ŷ and ẑ axes.

We transfer the hydrogen atom on the ẑ axis to the
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FIG. 2: Oxidation state N for Bi5+ (black) or Bi3+ (blue) in
Ba2Bi5+Bi3+O6.

next unit cell along ẑ. The path (Fig. 1a) consists of a
1 Å straight line and a 1 Å radius half-circle in the H-O-H
plane. N continuously increases from zero to +1, mean-
ing it is H+, while the overall change in the perpendicular
component of ~P is zero.

Fig. 1b shows N = -2 for the oxygen atom. In this case,
the oxygen sublattice is first moved straight along the H-
O-H bisector for

√
2 Å, during which hydrogen atoms

also move in the H-O-H plane to keep the O-H bond
lengths unchanged. Next, the hydrogen atoms return to
their original positions, and the oxygen atom is moved
straight to the starting O location in the next unit cell.

In order to demonstrate that our formulation of ox-
idation state is a function of crystal environment, we
perform calculations for LiH, whose conventional OS of
hydrogen is -1. The results of calculations are shown in
Fig. 1c. LiH has the rock-salt crystal structure, with two
atoms in the unit cell, and FCC lattice vectors. For each
atom, the path corresponds to the transfer along one of
the lattice vectors. It can be easily seen from the figure
that N = −1 for hydrogen, revealing H−, while for Li
N = +1, signifying Li+.

Next, the BaBiO3 system is chosen to demonstrate our
method’s ability to differentiate Bi5+ and Bi3+ in a sin-
gle phase. The formal OS of Bi for cubic perovskite
BaBiO3 is +4, leading to a charge disproportionation
2Bi4+ → Bi5+ + Bi3+ which is coupled to a collective
oxygen octahedral breathing mode[24]. Therefore, a dou-
ble perovskite 10-atom rhombhedral unit cell is used with
conventional lattice parameter of 8.66 Å and octahedral
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FIG. 3: Oxidation state N for Fe2+ in Sr2Fe2+W6+O6.
One FeWO4 layer and the sublattice displacement vector are
shown.

breathing giving Bi-O bond lengths of 1.97 Å and 2.37 Å.
An effective Hubbard U term of 6 eV is applied to the
oxygen 2p orbitals to correct for the band gap underes-
timation of DFT; this results in an LDA+U band gap of
1.88 eV, much larger than the published GGA-PBE band
gap of 0.6 eV and close to the measured optical band gap
of 2.05 eV[25].

Insulating paths for each Bi sublattice are found by
moving one Bi cation and its images straight along a
lattice vector and carefully adjusting positions of sur-
rounding O ions to minimize Bi-O bond length change
during the path. The results in Fig. 2 show that Bi in
the smaller oxygen cage has N = +5 while the other Bi
has N = +3, consistent with conventional wisdom that
Bi5+ has a smaller ionic radius than Bi3+.

Lastly, we use Sr2FeWO6 to show that for a sys-
tem with variable OS elements (Fe2+ vs. Fe3+), this
method can definitively assign OS and resolve the am-
biguity. While most of Sr2FeMO6 (M = Ta, Mo,
Re, . . . ) are ferromagnetic metals and contain Fe3+,
Sr2FeWO6 is an anti-ferromagnetic insulator [26]. Fe
charge state in Sr2FeWO6 has been studied experimen-
tally by Mössbauer spectroscopy and the results fall bor-
derline between high spin +2 and low spin +3 state. Base
on the large unit cell and a purposed “cancellation effect”
it is assigned to be Fe2+ [27]. In our calculations, we
used the experimental 80-atom structure of monoclinic
Sr2FeWO6 unit cell, which accommodates the type-II
anti-ferromagnetic ordering of Fe [28]. An effective Hub-
bard U of 4 eV is added to the strongly correlated Fe 3d
orbitals [29]. An Fe ion is moved along the shortest axis,
and the path is initially obtained by the nudged elastic
band (NEB) method, with a subsequent manual adjust-
ment of oxygen positions for bond length preservation,
and addition of more intermediate structures to ensure
continuity. The result in Fig. 3 indicates that Fe has N
= +2, as earlier work stated, and shows the ability of our
methodology to identify OS for systems where ambiguity
arises from multiple variable-valent elements.

To visualize the idea of “electrons topologically bound
to nucleus”, we calculate the trajectories of the centers
of maximally localized Wannier functions [30, 31] for the

H2O system with the Wannier90 program [32]. Fig. 4a
shows the results when the O atom is moved along the
aforementioned path. Note that along the path, high
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FIG. 4: Trajectories of the maximally localized WCs gener-
ated by the motion of the O (a) and H (b) in the H2O system.
The O 2px WC trajectory from (b) is shown on an expanded
scale in (c). The units are Å.

symmetry structures are intentionally avoided due to the
discontinuity that would otherwise occur in the trajecto-
ries. As can be seen, all WCs move with the O atom to
the next unit cell. The WC which we assign as the oxy-
gen 2px orbital stays very close to the nucleus along the
whole path, so that its trajectory almost coincides with
the trajectory of the nucleus. WCs can also exchange
their characters along the way depending on the path:
the O sp2 lone pair becomes O-Hy bond, and vice versa.
When an H atom is moved, however, all WCs stay in
the same unit cell (Fig. 4b), so that there is no overall
electron displacement.

In summary, we developed a method for partitioning
electrons to atoms based on their wavefunction topolo-
gies. When an atom moves to its image position in peri-
odic insulators, change of polarization reveals the number
of Wannier function centers that move with the atom,
provided that the system stays insulating. This effec-
tively indicates the number of electrons that “belong”
to the nucleus and establishes a rigorous definition of
oxidation state of ions in solids. This concept of “ions-
in-solids” can have important implications for materials
modeling. For example, electron redistribution upon de-
fect formation or ion transport through a polar medium
can be described in terms of ion deformation (no change
in OS) or charge transfer (when OS changes).
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